首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Chemical Immobilization and Conversion of Active Polysulfides Directly by Copper Current Collector: A New Approach to Enabling Stable Room‐Temperature Li‐S and Na‐S Batteries
Authors:Peirong Li  Lu Ma  Tianpin Wu  Hualin Ye  Junhua Zhou  Feipeng Zhao  Na Han  Yeyun Wang  Yunling Wu  Yanguang Li  Jun Lu
Institution:1. Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon‐Based Functional Materials and Devices, Soochow University, Suzhou, China;2. X‐ray Science Division, Argonne National Laboratory, Lemont, IL, USA;3. Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, USA
Abstract:Room‐temperature Li/Na‐S batteries are promising energy storage solutions, but unfortunately suffer from serious cycling problems rooted in their polysulfide intermediates. The conventional strategy to tackle this issue is to design host materials for trapping polysulfides via weak physical confinement and interfacial chemical interactions. Even though beneficial, their capability for the polysulfide immobilization is still limited. Herein, the unique sulfiphilic nature of metallic Cu is revisited. Upon the exposure to polysulfide in aqueous or aprotic solution, the surface sulfidization rapidly takes place, resulting in the formation of Cu2S nanoflake arrays with tunable texture. When the sulfidized Cu current collector is directly used as the sulfur‐equivalent cathode, it enables high‐performance Li/Na‐S batteries at room temperature with reasonable high sulfur loading. Specific capacities up to ≈1200 mAh g?1 for Li‐S and ≈400 mAh g?1 for Na‐S are measured when normalized to the amount of equivalent sulfur, and can be readily sustained for >1000 cycles.
Keywords:chemical immobilization of polysulfide  Li‐S batteries  Na‐S batteries  sulfiphilic Cu foam  sulfur‐equivalent cathodes
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号