首页 | 本学科首页   官方微博 | 高级检索  
   检索      


recB recC-dependent processing of heteroduplex DNA stimulates recombination of an adjacent gene in Escherichia coli.
Authors:A Kraczkiewicz-Dowjat and  R Fishel
Institution:Laboratory of Chromosome Biology, National Cancer Institute, Frederick Cancer Research Facility, Maryland 21701.
Abstract:The effect of DNA mismatched repair on the genetic recombination of a gene adjacent to the mismatch site (MS) was tested by using four mismatch configurations. An MS was constructed in a well-characterized plasmid recombination substrate, and recombination with a resident compatible plasmid was measured after transformation of the mismatched plasmid into Escherichia coli. The mismatched plasmids were constructed such that one of the DNA strands was methylated by the DNA adenine methylase (Dam), while the other strand was unmethylated. The processing of a hemimethylated single-base-pair mismatch had no effect on the recombination of the adjacent gene, suggesting that the most efficient (Dam-instructed) mismatch repair process does not secondarily promote genetic recombination. However, mismatches that could form an ordered secondary structure resembling a cruciform increased the recombination of this adjacent gene at least 20-fold. An identical mismatch that could not form an ordered secondary structure had no effect in this system. The increased frequency of recombination observed was found to require the recB or recC gene product or both. Furthermore, the recombination appeared unidirectional, in that the cruciform-containing plasmid did not produce stable transformants. Our results support a model in which the cruciform-containing plasmid can participate in recombination with the resident plasmid but is unable to produce stable transformant progeny. A proposed role for the RecBCD enzyme (ExoV) in this process is discussed.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号