首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Consolidated bioprocessing performance of <Emphasis Type="Italic">Thermoanaerobacterium thermosaccharolyticum</Emphasis> M18 on fungal pretreated cornstalk for enhanced hydrogen production
Authors:Lei?Zhao  Email author" target="_blank">Guang-Li?CaoEmail author  Ai-Jie?Wang  Hong-Yu?Ren  Kun?Zhang  Email author" target="_blank">Nan-Qi?RenEmail author
Institution:1.State Key Laboratory of Urban Water Resource and Environment,Harbin Institute of Technology,Harbin,China;2.School of Life Science and Technology,Harbin Institute of Technology,Harbin,China;3.College of Power and Energy Engineering,Harbin Engineering University,Harbin,China
Abstract:

Background

Biological hydrogen production from lignocellulosic biomass shows great potential as a promising alternative to conventional hydrogen production methods, such as electrolysis of water and coal gasification. Currently, most researches on biohydrogen production from lignocellulose concentrate on consolidated bioprocessing, which has the advantages of simpler operation and lower cost over processes featuring dedicated cellulase production. However, the recalcitrance of the lignin structure induces a low cellulase activity, making the carbohydrates in the hetero-matrix more unapproachable. Pretreatment of lignocellulosic biomass is consequently an extremely important step in the commercialization of biohydrogen, and for massive realization of lignocellulosic biomass as alternative fuel feedstock. Thus, development of a pretreatment method which is cost efficient, environmentally benign, and highly efficient for enhanced consolidated bioprocessing of lignocellulosic biomass to hydrogen is essential.

Results

In this research, fungal pretreatment was adopted for enhanced hydrogen production by consolidated bioprocessing performance. To confirm the fungal pretreatment efficiency, two typical thermochemical pretreatments were also compared side by side. Results showed that the fungal pretreatment was superior to the other pretreatments in terms of high lignin reduction of up to 35.3% with least holocellulose loss (the value was only 9.5%). Microscopic structure observation combined with Fourier transform infrared spectroscopy (FTIR) analysis further demonstrated that the lignin and crystallinity of lignocellulose were decreased with better holocellulose reservation. Upon fungal pretreatment, the hydrogen yield and hydrogen production rate were 6.8 mmol H2 g-1 pretreated substrate and 0.89 mmol L-1 h-1, respectively, which were 2.9 and 4 times higher than the values obtained for the untreated sample.

Conclusions

Results revealed that although all pretreatments could contribute to the enhancement of hydrogen production from cornstalk, fungal pretreatment proved to be the optimal method. It is apparent that besides high hydrogen production efficiency, fungal pretreatment also offered several advantages over other pretreatments such as being environmentally benign and energy efficient. This pretreatment method thus has great potential for application in consolidated bioprocessing performance of hydrogen production.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号