首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The breakdown of adenine nucleotides in glucose-depleted human red cells.
Authors:I Rapoport  S Rapoport  D Maretzki  R Elsner
Abstract:1) The rate of 2,3-bisphosphoglycerate breakdown is independent of pH value. 2) The adenine nucleotide pattern at alkaline pH values with its characteristic lowering of ATP and the accompanying accumulation of fructose-1,6-bisphosphate is caused by a relative excess of the activity of the hexokinase-phosphofructokinase system as compared wity pyruvate kinase. 3) The breakdown of adenine nucleotides proceeds via AMP mainly through phosphatase and not via AMP deaminase. 4) The constancy of the sum of nucleotides as long as glucose is present is postulated to be due to resynthesis via adenosine kinase which competes successfully with adenosine deaminase. 5) A procedure is given to calculate ATPase activity of glucose-depleted red cells. The results indicate that the ATPase activity is less at lower pH values and declines with time. An ATPase with a high Km for ATP is postulated. 6) During glucose depletion ATP production is mostly derived from the breakdown of 2,3-bisphosphoglycerate and the supply from the pentose phosphate pool both of which proceed at a constant rate. The contribution of pentose phosphate from the breakdown of adenine nucleotides amounts to 40% of the lactate formed at pH 6.8 and is about twice the lactate at pH 8.1.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号