首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Gravitropism and starch statoliths in an Arabidopsis mutant
Authors:Norunn Sæther  Tor-Henning Iversen
Institution:(1) Department of Botany, AVH, University of Trondheim, N-7055 Dragvoll, Norway
Abstract:The mutant TC 7 of Arabidopsis thaliana (L.) Heynh. has been reported to be starch-free and still exhibit root gravitropism (T. Caspar and B. G. Pickard 1989, Planta 177, 185–197). This is not consistent with the hypothesis that plastid starch has a statolith function in gravity perception. In the present study, initial light microscopy using the same mutant showed apparently starch-free statocytes. However, ultrastructural examination detected residues of amyloplast starch grains in addition to the starch-depleted amyloplasts. Applying a point-counting morphometric method, the starch grains in the individual amyloplasts in the mutant were generally found to occupy more than 20% and in a few cases up to 60% of the amyloplast area. In the wild type (WT) the starch occupied on average 98 % of the amyloplast area and appeared as densely packed grains. The amyloplasts occupied 13.9% of the area of the statocyte in the mutant and 23.3% of the statocyte area in the WT. Sedimentation of starch-depleted amyloplasts in the mutant was not detected after 40 min of inversion while in the WT the amyloplasts sedimented at a speed of 6 mgrm · h-1. The gravitropic reactivity and the curvature pattern were also examined in the WT and the mutant. The time-courses of root curvature in the WT and the mutant showed that when cultivated under standard conditions for 60 h in darkness, the curvatures were 83° and 44°, respectively, after 25 h of continuous stimulation in the horizontal position. The WT roots curved significantly more rapidly and with a more normal gravitropic pattern than those of the mutant. These results are discussed in relation to the results previously obtained with the mutant and with respect to the starch-statolith hypothesis.Abbreviation WT wild type This work was supported by grants from Norwegian Research Council for Science and the Humanities (NAVF) which we gratefully acknowledge. We would also like to thank Dr. Timothy Caspar, Michigan State University, East Lansing, USA, for providing us with the seeds of TC 75.
Keywords:Amyloplast  Arabidopsis gravitropism  Gravitropism (root)  Root curvature  Starch statoliths (root)  Statolith hypothesis
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号