首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Reversible heat-inactivation of the calvin cycle: A possible mechanism of the temperature regulation of photosynthesis
Authors:Engelbert Weis
Institution:(1) Botanisches Institut der Universität, Universitätsstraße 1, Gebäude 26.13, D-4000 Düsseldorf, Germany
Abstract:Photosynthetic CO2 fixation rates in leaves and intact chloroplasts of spinach measured at 18°–20° C are substantially decreased by pretreatment at temperatures exceeding 20° C. Mild heating which causes 80% inhibition of CO2 fixation does not affect phosphoglyceroacid reduction and causes increases in the ATP/ADP ratio and the light-induced transthylakoid proton gradient. The inactivation of the CO2 fixation is completely reversible with half-times of recovery in the order of 15–20 min. Comparison of steady-state patterns of 14C labeled Calvin cycle intermediates of heat-treated and control samples reveals a large increase in the ribulose-1,5-bisphosphate/phosphoglyceroacid ratio and a large decrease in the phosphoglyceroacid/triosephosphate ratio. It is concluded that inactivation of CO2 fixation occurring at elevated temperatures is caused by inhibition of the ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39). Measurements of light-induced light scattering changes of thylakoids and of the light-induced electrochromic absorption shift show that these signals are affected by mild heating in a way which is strictly correlated with the inactivation of the CO2 fixation. It is proposed that the function of the ribulose-1,5-bisphosphate carboxylase in vivo requires a form of activation that involves properties of the thylakoid membrane which are affected by the heat treatment. The fact that these changes in thylakoid membrane properties and of ribulose-1,5-bisphosphate carboxylase activity are already affected at elevated temperatures which can still be considered physiological, and the reversible nature of these changes, suggest that they may play a role in temperature regulation of the overall photosynthetic process.Abbreviations 9-AA 9-aminoacridine - DMO 5,5-dimethyloxazolidine-2,4-dione - FBP fructose-1,6-bisphosphate - HEPES N-2-hydroxyethylpiperazine N-2-ethane sulfonic acid - HMP hexose monophosphates - PGA 3-phosphoglycerate - PMP pentose monophosphates - RuBP ribulose-1,5-bisphosphate - SBP seduheptulose-1,7-bisphosphate - TP triose monophosphates
Keywords:Calvin cycle  Electrochromic shift  Light scattering  Ribulose-1  5-bisphosphate carboxylase  Spinacia  Temperature regulation
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号