首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Arabidopsis FAB1A/B is possibly involved in the recycling of auxin transporters
Authors:Tomoko Hirano  Masa H Sato
Institution:1.Graduate School of Biostudies; Kyoto University; Kyoto, Japan;2.Laboratory of Cellular Dynamics; Graduate School of Life and Environmental Sciences; Kyoto Prefectural University; Kyoto, Japan
Abstract:Fab1/PIKfyve produces Phosphatidylinositol-3,5-bisphosphate (PtdIns (3,5) P2) from Phosphatidylinositol-3-phosphate (PtdIns 3-P), and is involved not only in vacuole/lysosome homeostasis, but also in transporting various proteins to the vacuole or recycling proteins on the plasma membrane (PM) through the use of endosomes in a variety of eukaryotic cells. We previously demonstrated that Arabidopsis FAB1A/B functions as PtdIns-3,5-kinase in both Arabidopsis and fission yeast and plays a key role in vacuolar acidification and endocytosis. Although the conditional FAB1A/B knockdown mutant revealed an auxin-resistant phenotype to a membrane-impermeable auxin, 2,4-dichlorophenoxyacetic acid (2,4-D), the mutant did not exhibit this phenotype to a membrane-permeable artificial auxin, naphthalene 1-acetic acid (NAA). The difference in the sensitivities to 2,4-D and NAA is similar to those of the auxin-resistant mutants such as aux1. Taken together, these results suggest that impairment of the function of Arabidopsis FAB1A/B might cause a defect in the membrane recycling capabilities of the auxin transporters and inhibit proper auxin transport into the cells in Arabidopsis.Key words: auxin signaling, auxin transporter, recycling of plasma membrane proteinsPhosphatidylinositol-3,5-bisphosphate (PtdIns (3,5) P2) exists on the external membrane of multi-vesicular bodies (MVBs) at very low levels in eukaryotic cells,1,2 and plays key roles in endomembrane homeostasis including endocytosis, vacuole/lysosome formation and vacuolar acidification.1,3 PtdIns (3,5) P2 deficiency causes an enlarged vacuolar structure in yeast and mammalian cells.4,5 FAB1 forms a protein complex with its regulatory molecules, and synthesizes PtdIns (3,5) P2 from PtdIns 3P.69 In Arabidopsis, there are four Fab1/PIKfyve orthologs (FAB1A, FAB1B, FAB1C and FAB1D) in the genome, and the double homozygous mutant of FAB1A and FAB1B exhibited the male gametophyte lethal phenotype.10 Previously, we reported that conditional loss-of-function and gain-of-function mutants of FAB1A/B impair endomembrane homeostasis and reveal various developmental phenotypes.11 Interestingly, lateral root formation by exogenous auxin, which is known as a typical auxin-responsive phenotype, was largely impaired when FAB1A/B expression was conditionally downregulated or upregulated. From these results, we speculated that the defect in the endocytosis process in fab1a/b mutants might inhibit the precise recycling process of auxin transporters on the PM, thereby inhibiting proper auxin transport into the plant cells.11 In this report, we tested this hypothesis to assess the sensitivity on auxin-dependent lateral root formation to a membrane permeable auxin, NAA, in the fab1a/b knockdown mutant.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号