首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Golgi-localized UDP-glucose transporter is required for cell wall integrity in rice
Authors:Xueqin Song  Baocai Zhang  Yihua Zhou
Institution:State Key Laboratory of Plant Genomics; Institute of Genetics and Developmental Biology; Chinese Academy of Sciences; Beijing, China
Abstract:Cell wall-related nucleotide sugar transporters (NSTs) theoretically supply the cytosolic nucleotide sugars for glycosyltransferases (GTs) to carry out ploysaccharide synthesis and modification in the Golgi apparatus. However, the regulation of cell wall synthesis by NSTs remains undescribed. Recently, we have reported the functional characterization of Oryza sativa nucleotide sugar transport (Osnst1) mutant and its corresponding gene. OsNST1/BC14 is localized in the Golgi apparatus and transports UDP-glucose. This mutant provides us with a unique opportunity for evaluation of its broad impacts on cell wall structure and components. We previously examined cell wall composition of bc14 and wild type plants. Here, the spatial distribution of these cell wall alterations was analyzed by immunolabeling approach. Analysis of the sugar yield in different cell wall fractions indicated that this mutation improves the extractability of cell wall components. Field emission scanning electron microscopy further showed that the orientation of microfibrils in bc14 is irregular when compared to that in wild type. Therefore, this UDP-glucose transporter, making substrates available for polysaccharide biosynthesis, plays a critical role in maintaining cell wall integrity.Key words: UDP-glucose transporter, Golgi apparatus, cell wall polysaccharides, xylan, riceNucleotide sugars mainly generated in cytosol are the substrates for the synthesis of cell wall polysaccharides. Supply of nucleotide sugars is thus a key level for regulation of cell wall components and structure. Mutation in MUR1, an isoform of GDP-D-mannose-4,6-dehydratase, causes reduced amount of GDP-fucose and abnormal xyloglucan structure.1,2 Disturbance of UDP-rhamnose synthesis via the mutation in RHM2/MUM4 decreases the rhamnogalacturonan I contents in Arabidopsis seeds. Cellulose synthase catalytic subunits (CESAs) generally use cytosolic UDP-glucoses to synthesize cellulose on the plasma membrane. UDP-glucose can be produced either via the catalysis of sucrose by sucrose synthase (SuSy) or through the phosphorylation of glucose-1-phosphate by UDP-glucose pyrophosphorylase (UGPase).3 Suppression of SuSy function in cotton inhibited fiber initiation and elongation.4 For the synthesis of noncellulosic polysaccharides occurring inside the Golgi lumen, the cytosolic nucleotide sugars should be translocated inwards by Golgi nucleotide sugar transporters (NSTs).5 However, this hypothesis remains to be confirmed, although transport activities have been identified in some plant NSTs.610 Altering the precursor supply may also affect the overall carbon allocation in plants. It is reasonable that substrate regulation often causes pleiotropic effects on cell wall biosynthesis and plant growth. Without genetic resources or mutants on cell wall related NST, the exact evaluation of NSTs'' impacts on cell wall structure and composition is largely delayed. Until recently, we identified a Golgi-localized transporter OsNST1 mutant in rice. This transporter has been found to supply UDP-glucose for the formation of matrix polysaccharides, thereby modulating cellulose biosynthesis.11 Here, we examine these alterations of cell wall polymers at the cellular level. The orientation of cellulose microfibrils and extractability of wall polysaccharides were also compared between the mutant and wild type. All those further our understandings of the functions of NSTs and the synergetic synthesis of different polymers.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号