首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Calcium spark properties in ventricular myocytes are altered in aged mice
Authors:Howlett Susan E  Grandy Scott A  Ferrier Gregory R
Institution:Dept. of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 1X5. Susan.Howlett@Dal.ca
Abstract:This study determined whether whole cell Ca(2+) transients and unitary sarcoplasmic reticulum (SR) Ca(2+) release events are constant throughout adult life or whether Ca(2+) release is altered in aging ventricular myocytes. Myocytes were isolated from young adult (approximately 5 mo old) and aged (approximately 24 mo old) mice. Spontaneous Ca(2+) sparks and Ca(2+) transients initiated by field stimulation were detected with fluo-4. All experiments were conducted at 37 degrees C. Ca(2+) transient amplitudes were reduced, and Ca(2+) transient rise times were abbreviated in aged cells stimulated at 8 Hz compared with young adult myocytes. Furthermore, the incidence and frequency of spontaneous Ca(2+) sparks were markedly higher in aged myocytes compared with young adult cells. Spark amplitudes and spatial widths were similar in young adult and aged myocytes. However, spark half-rise times and half-decay times were abbreviated in aged cells compared with younger cells. Resting cytosolic Ca(2+) levels and SR Ca(2+) stores were assessed by rapid application of caffeine in fura-2-loaded cells. Neither resting Ca(2+) levels nor SR Ca(2+) content differed between young adult and aged cells. Thus increased spark frequency in aging cells was not attributable to increased SR Ca(2+) stores. Furthermore, the decrease in Ca(2+) transient amplitude was not due to a decrease in SR Ca(2+) load. These results demonstrate that alterations in fundamental SR Ca(2+) release units occur in aging ventricular myocytes and raise the possibility that alterations in Ca(2+) release may reflect age-related changes in fundamental release events rather than changes in SR Ca(2+) stores and diastolic Ca(2+) levels.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号