首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Hemodynamic and biochemical adaptations to vascular smooth muscle overexpression of p22phox in mice
Authors:Laude Karine  Cai Hua  Fink Bruno  Hoch Nyssa  Weber David S  McCann Louise  Kojda Georg  Fukai Tohru  Schmidt Harald H H W  Dikalov Sergey  Ramasamy Santhini  Gamez Graciela  Griendling Kathy K  Harrison David G
Institution:Division of Cardiology, Emory University, 101 Woodruff Circle, Atlanta, GA 30322, USA.
Abstract:Protein levels and polymorphisms of p22(phox) have been suggested to modulate vascular NAD(P)H oxidase activity and vascular production of reactive oxygen species (ROS). We sought to determine whether increasing p22(phox) expression would alter vascular ROS production and hemodynamics by targeting p22(phox) expression to smooth muscle in transgenic (Tg) mice. Aortas of Tg(p22smc) mice had increased p22(phox) and Nox1 protein levels and produced more superoxide and H(2)O(2). Surprisingly, endothelium-dependent relaxation and blood pressure in Tg(p22smc) mice were normal. Aortas of Tg(p22smc) mice produced twofold more nitric oxide (NO) at baseline and sevenfold more NO in response to calcium ionophore as detected by electron spin resonance. Western blot analysis revealed a twofold increase in endothelial NO synthase (eNOS) protein expression in Tg(p22smc) mice. Both eNOS expression and NO production were normalized by infusion of the glutathione peroxidase mimetic ebselen or by crossing Tg(p22smc) mice with mice overexpressing catalase. We have previously found that NO stimulates extracellular superoxide dismutase (ecSOD) expression in vascular smooth muscle. In keeping with this, aortic segments from Tg(p22smc) mice expressed twofold more ecSOD, and chronic treatment with the NOS inhibitor N(G)-nitro-L-arginine methyl ester normalized this, suggesting that NO regulates ecSOD protein expression in vivo. These data indicate that chronic oxidative stress caused by excessive H(2)O(2) production evokes a compensatory response involving increased eNOS expression and NO production. NO in turn increases ecSOD protein expression and counterbalances increased ROS production leading to the maintenance of normal vascular function and hemodynamics.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号