首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Insulin signaling is inhibited by micromolar concentrations of H(2)O(2). Evidence for a role of H(2)O(2) in tumor necrosis factor alpha-mediated insulin resistance.
Authors:L L Hansen  Y Ikeda  G S Olsen  A K Busch  L Mosthaf
Institution:Department of Molecular Signaling, Hagedorn Research Institute, Niels Steensens Vej 6, 2820 Gentofte, Denmark.
Abstract:Both hyperglycemia and tumor necrosis factor alpha (TNFalpha) were found to induce insulin resistance at the level of the insulin receptor (IR). How this effect is mediated is, however, not understood. We investigated whether oxidative stress and production of hydrogen peroxide could be a common mediator of the inhibitory effect. We report here that micromolar concentrations of H(2)O(2) dramatically inhibit insulin-induced IR tyrosine phosphorylation (pretreatment with 500 microM H(2)O(2) for 5 min inhibits insulin-induced IR tyrosine phosphorylation to 8%), insulin receptor substrate 1 phosphorylation, as well as insulin downstream signaling such as activation of phosphatidylinositol 3-kinase (inhibited to 57%), glucose transport (inhibited to 36%), and mitogen-activated protein kinase activation (inhibited to 7.2%). Both sodium orthovanadate, a selective inhibitor of tyrosine-specific phosphatases, as well as the protein kinase C inhibitor G?6976 reduced the inhibitory effect of hydrogen peroxide on IR tyrosine phosphorylation. To investigate whether H(2)O(2) is involved in hyperglycemia- and/or TNFalpha-induced insulin resistance, we preincubated the cells with the H(2)O(2) scavenger catalase prior to incubation with 25 mM glucose, 25 mM 2-deoxyglucose, 5.7 nM TNFalpha, or 500 microM H(2)O(2), respectively, and subsequent insulin stimulation. Whereas catalase treatment completely abolished the inhibitory effect of H(2)O(2) and TNFalpha on insulin receptor autophosphorylation, it did not reverse the inhibitory effect of hyperglycemia. In conclusion, these results demonstrate that hydrogen peroxide at low concentrations is a potent inhibitor of insulin signaling and may be involved in the development of insulin resistance in response to TNFalpha.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号