首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Mechanism of heavy metal ion activation of phytochelatin (PC) synthase: blocked thiols are sufficient for PC synthase-catalyzed transpeptidation of glutathione and related thiol peptides
Authors:Vatamaniuk O K  Mari S  Lu Y P  Rea P A
Institution:Department of Biology, Plant Science Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
Abstract:The dependence of phytochelatin synthase (gamma-glutamylcysteine dipeptidyltranspeptidase (PCS), EC ) on heavy metals for activity has invariably been interpreted in terms of direct metal binding to the enzyme. Here we show, through analyses of immunopurified, recombinant PCS1 from Arabidopsis thaliana (AtPCS1), that free metal ions are not essential for catalysis. Although AtPCS1 appears to be primarily activated posttranslationally in the intact plant and purified AtPCS1 is able to bind heavy metals directly, metal binding per se is not responsible for catalytic activation. As exemplified by Cd(2+)- and Zn(2+)-dependent AtPCS1-mediated catalysis, the kinetics of PC synthesis approximate a substituted enzyme mechanism in which micromolar heavy metal glutathione thiolate (e.g. Cd.GS(2) or Zn.GS(2)) and free glutathione act as gamma-Glu-Cys acceptor and donor. Further, as demonstrated by the facility of AtPCS1 for the net synthesis of S-alkyl-PCs from S-alkylglutathiones with biphasic kinetics, consistent with the sufficiency of S-alkylglutathiones as both gamma-Glu-Cys donors and acceptors in media devoid of metals, even heavy metal thiolates are dispensable. It is concluded that the dependence of AtPCS1 on the provision of heavy metal ions for activity in media containing glutathione and other thiol peptides is a reflection of this enzyme's requirement for glutathione-like peptides containing blocked thiol groups for activity.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号