首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Detection of phospholipid phase separation. A multifrequency phase fluorimetry study of 1,6-diphenyl-1,3,5-hexatriene fluorescence
Authors:T Parasassi  F Conti  M Glaser  E Gratton
Abstract:Using multifrequency phase and modulation fluorometry and a nonlinear least-squares analysis of lifetime data, we were able to determine the complex decay of 1,6-diphenyl-1,3,5-hexatriene (DPH) in synthetic phospholipid bilayers. Our results showed a monoexponential decay of DPH in the pure isotropic solvents studied, over a wide temperature range, and a double-exponential decay of DPH in phospholipids, both above and below the transition. During the transition, and in mixed-phase phospholipids, a three-component analysis was successfully accomplished, and the pre-exponential factors of the two main components have been shown to be quantitatively representative of the gel and liquid-crystalline phases of the bilayer. The fractional intensity of the shorter lifetime component depends on the modalities of the sample preparation. The factors affecting this component are discussed. From the DPH fluorescence lifetime and from the anisotropy data in L-alpha-dimyristoyl-phosphatidylcholine/L-alpha-dipalmitoyl-phosphatidyl choline mixtures, a phase diagram was independently constructed. Conclusions about the sensitivity and the partition of the probe between gel and the liquid-crystalline phases of the bilayer are derived. Lifetime experiments on DPH in a L-alpha-dilauroyl-phosphatidylcholine/L-alpha-dipalmitoyl-phosphatidylch oline mixture suggested a general method for the determination and quantitation of the two different phases in the bilayer.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号