首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Species barrier to RNA recognition overcome with nonspecific RNA binding domains.
Authors:C C Wang  P Schimmel
Institution:The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, USA.
Abstract:We show here that nonspecific RNA-protein interactions can significantly enhance the biological activity of an essential RNA. protein complex. Bacterial glutaminyl-tRNA synthetase poorly aminoacylates yeast tRNA and, as a consequence, cannot rescue a knockout allele of the gene for the yeast homologue. In contrast to the bacterial protein, the yeast enzyme has an extra appended domain at the N terminus. Previously, we showed that fusion of this yeast-specific domain to the bacterial protein enabled it to function as a yeast enzyme in vivo and in vitro. We suggested that the novel yeast-specific domain contributed to RNA interactions in a way that compensated for the poor fit between the yeast tRNA and bacterial enzyme. Here we establish that the novel appended domain by itself binds nonspecifically to different RNA structures. In addition, we show that fusion of an unrelated yeast protein, Arc1p, to the bacterial enzyme also converts it into a functional yeast enzyme in vivo and in vitro. A small C-terminal segment of Arc1p is necessary and sufficient for this conversion. This segment was shown by others to have nonspecific tRNA binding properties. Thus, nonspecific RNA binding interactions in general can compensate for barriers to formation of a specific and essential RNA.protein complex.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号