首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Multiple interactions of HIV-I Tat protein with size-defined heparin oligosaccharides.
Authors:M Rusnati  G Tulipano  D Spillmann  E Tanghetti  P Oreste  G Zoppetti  M Giacca  M Presta
Institution:Unit of General Pathology, Department of Biomedical Sciences, School of Medicine, University of Brescia, 25123 Brescia, Italy.
Abstract:Tat protein, a transactivating factor of the human immunodeficiency virus type I, acts also as an extracellular molecule. Heparin affects the bioavailability and biological activity of extracellular Tat (Rusnati, M., Coltrini, D., Oreste, P., Zoppetti, G., Albini, A., Noonan, D., D'Adda di Fagagna, F., Giacca, M., and Presta, M. (1997) J. Biol. Chem. 272, 11313-11320). Here, a series of homogeneously sized, (3)H-labeled heparin fragments were evaluated for their capacity to bind to free glutathione S-transferase (GST)-Tat protein and to immobilized GST-Tat. Hexasaccharides represent the minimum sized heparin fragments able to interact with GST-Tat at physiological ionic strength. Also, the affinity of binding increases with increasing the molecular size of the oligosaccharides, with large fragments (>/=18 saccharides) approaching the affinity of full-size heparin. 6-Mer heparin binds GST-Tat with a dissociation constant (K(d)) equal to 0.7 +/- 0.4 microM and a molar oligosaccharide:GST-Tat ratio of about 1:1. Interaction of GST-Tat with 22-mer or full-size heparin is consistent instead with two-component binding. At subsaturating concentrations, a single molecule of heparin interacts with 4-6 molecules of GST-Tat with high affinity (K(d) values in the nanomolar range of concentration); at saturating concentrations, heparin binds GST-Tat with lower affinity (K(d) values in the micromolar range of concentration) and a molar oligosaccharide:GST-Tat ratio of about 1:1. In agreement with the binding data, a positive correlation exists between the size of heparin oligosaccharides and their capacity to inhibit cell internalization, long terminal repeat-transactivating activity of extracellular Tat in HL3T1 cells, and its mitogenic activity in murine adenocarcinoma T53 Tat-less cells. The data demonstrate that the modality of heparin-Tat interaction is strongly affected by the size of the saccharide chain. The possibility of establishing multiple interactions increases the affinity of large heparin fragments for Tat protein and the capacity of the glycosaminoglycan to modulate the biological activity of extracellular Tat.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号