首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Hepatic microsomal alcohol-oxidizing system. Affinity for methanol, ethanol, propanol, and butanol.
Authors:R Teschke  Y Hasumura  C S Lieber
Abstract:Oxidation of methanol, ethanol, propanol, and butanol by the microsomal fraction of rat liver homogenate is described. This microsomal alcohol-oxidizing system is dependent on NADPH and molecular oxygen and is partially inhibited by CO, features which are common for microsomal drug-metabolizing enzymes. The activity of the microsomal alcohol-oxidizing system could be dissociated from the alcohol peroxidation via catalase-H2O2 by differences in substrate specificity, since higher aliphatic alcohols react only with the microsomal system, but not with catalase-H2O2. Following solubilization of microsomes by ultrasonication and treatment with deoxycholate, the activity of the microsomal alcohol-oxidizing system was separated from contaminating catalase by DEAE-cellulose column chromatography, ruling out an obligatory involvement of catalase-H2O2 in the activity of the NADPH-dependent microsomal alcohol-oxidizing system. In intact hepatic microsomes, the catalase inhibitor sodium azide slightly decreased the oxidation of methanol and ethanol, but not that of propanol and butanol, indicating a facultative role of contaminating catalase in the microsomal oxidation of lower aliphatic alcohols only. It is suggested that the microsomal alcohol-oxidizing system accounts, at least in part, for that fraction of hepatic alcohol metabolism which is independent of the pathway involving alcohol dehydrogenase activity.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号