首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Characterization of semi-uncoupled hybrid Escherichia coli-Bacillus megaterium F1F0 proton-translocating ATPases.
Authors:M A Scarpetta  C A Hawthorne  W S Brusilow
Institution:Department of Biochemistry, Wayne State University School of Medicine, Detroit, Michigan 48201.
Abstract:Cloned atp genes for the proton-translocating ATPase of the obligate aerobe Bacillus megaterium have been demonstrated to be capable of complementing Escherichia coli ATPase (unc) mutants (Hawthorne, C. A., and Brusilow, W. S. A. (1986) J. Biol. Chem. 261, 5245-5248). To determine the minimum subunit requirements for cross-species complementation, we constructed all combinations of B. megaterium atpA, G, D, and C genes (coding for the alpha, gamma, beta, and epsilon subunits, respectively) and tested their abilities to complement two uncA (alpha subunit) and two uncD (beta subunit) mutants of E. coli. The results indicated that complementation of either uncD mutant required atpD (beta) only. Complementation of one of the uncA (alpha) mutants required atpA, G, and D (alpha, gamma, and beta) and possibly atpE (epsilon) as well. The other uncA mutant was not complemented by any combination of B. megaterium ATPase genes. Complementation of a beta mutant by atpD (beta) or atpD and C (beta epsilon) produced cells which could grow aerobically on a nonfermentable carbon source (succinate) but not anaerobically on rich medium containing glucose. These E. coli therefore had become obligate aerobes. The ability to grow anaerobically could be restored to the mutant complemented by atpD alone by growth at pH 7.5 or pH 8 in the presence of 0.1 M potassium.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号