首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Partial characterization of a glucocorticoid suppressible mitogenic activity secreted from a rat hepatoma cell line hypersensitive to the antiproliferative effects of glucocorticoids
Authors:P W Cook  C P Edwards  T Haraguchi  G L Firestone
Institution:Department of Molecular and Cell Biology, University of California, Berkeley 94720.
Abstract:We have previously shown that glucocorticoids suppress the proliferation of Fu5 hepatoma cells and have selected subclones which are either hypersensitive (BDS1) or resistant (EDR3) to the antiproliferative effects of dexamethasone, a synthetic glucocorticoid. BDS1 cells externalize a glucocorticoid suppressible mitogenic activity (denoted GSM) which stimulated 3H]thymidine incorporation in quiescent, serum-starved Balb/c 3T3 cells. Glucocorticoid treatment of BDS1 cells reduced the secreted levels of GSM activity by approximately 20-fold in comparison to untreated cells. The GSM activity was constitutively secreted from a glucocorticoid receptor minus variant (EDR3) demonstrating that the suppression of this mitogenic activity is a new glucocorticoid hormone response which required a functional receptor. GSM activity was sensitive to sulfhydryl reducing agents or trypsin, stable to heat and acid treatments and fractionated in gel filtration columns with a native molecular weight of approximately Mr 30,000. The persistence of this size for mitogenic activity after electrophoretic fractionation in nonreducing sodium dodecyl sulfate-poly-acrylamide gels suggested that the GSM activity is comprised of a single protein. Total secreted protein isolated from untreated BDS1, but not dexamethasone-treated BDS1, stimulated 3T3 cells to grow in transformed-appearing large colonies in soft agar and to display multiple layering and elongated spindle-like morphology on solid substratum. The addition of both insulin and EGF to conditioned medium protein isolated from glucocorticoid-treated BDS1 cells restored full induction of 3T3 cell anchorage-independent growth while insulin restored full and EGF partial mitogenic stimulation of these fibroblasts. These results suggest that the GSM activity acts in a pathway common to that of insulin or EGF in fibroblasts.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号