首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Evidence for the participation of independent translocation for phosphate and glucose 6-phosphate in the microsomal glucose-6-phosphatase system. Interactions of the system with orthophosphate, inorganic pyrophosphate, and carbamyl phosphate
Authors:W J Arion  A J Lange  H E Walls  L M Ballas
Abstract:The interactions of Pi, PPi, and carbamyl-P with the hepatic glucose-6-phosphatase system were studied in intact and detergent-disrupted microsomes. Penetration of PPi and carbamyl-P into intact microsomes was evidenced by their reactions with the enzyme located exclusively on the luminal surface. Lack of effects of carbonyl cyanide m-chlorophenylhydrazone and valinomycin + KCl indicated that pH gradients and/or membrane potentials that could influence the kinetics of the system are not generated during metabolism of PPi and glucose-6-P by intact microsomes. With disrupted microsomes, only competitive interactions were seen among glucose-6-P, Pi, PPi, and carbamyl-P. With intact microsomes, Pi, PPi, and carbamyl-P were relatively weak, noncompetitive inhibitors of glucose-6-phosphatase, and PPi hydrolysis was inhibited competitively by Pi and carbamyl-P but noncompetitively by glucose-6-P. Analysis of the kinetic data in combination with findings from other studies that a variety of inhibitors of the glucose-6-P translocase (T1) does not affect PPi hydrolysis provide compelling evidence that permeability of microsomes to Pi, PPi, and carbamyl-P is mediated by a second translocase (T2). Some properties of the microsomal anion transporters are described. If the characteristics of the glucose-6-phosphatase system as presently defined in intact microsomes apply in vivo, glucose-6-P hydrolysis appears to be the predominant, if not the exclusive, physiologic function of the system. Both the "noncompetitive character" and the relative ineffectiveness of Pi as an inhibitor of glucose-6-phosphatase of intact microsomes result from the rate limitation imposed by T1 that prevents equilibration of glucose-6-P across the membrane. In microsomes from fed rats, where T1 is less rate restricting, about one-half as much Pi was required to give 50% inhibition compared with microsomes from fasted or diabetic rats. Thus, any treatment or agent that alters the kinetic relationship between transport and hydrolysis of glucose-6-P (e.g. endocrine or nutritional status) is an essential consideration in analyses of kinetic data for the glucose-6-phosphatase system.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号