首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Recombinational and mutagenic repair of psoralen interstrand cross-links in Saccharomyces cerevisiae
Authors:Greenberg R B  Alberti M  Hearst J E  Chua M A  Saffran W A
Institution:Department of Chemistry and Biochemistry, Queens College, City University of New York, Flushing, New York 11367, USA.
Abstract:Psoralen photoreacts with DNA to form interstrand cross-links, which can be repaired by both nonmutagenic nucleotide excision repair and recombinational repair pathways and by mutagenic pathways. In the yeast Saccharomyces cerevisiae, psoralen cross-links are processed by nucleotide excision repair to form double-strand breaks (DSBs). In yeast, DSBs are repaired primarily by homologous recombination, predicting that cross-link and DSB repair should induce similar recombination end points. We compared psoralen cross-link, psoralen monoadduct, and DSB repair using plasmid substrates with site-specific lesions and measured the patterns of gene conversion, crossing over, and targeted mutation. Psoralen cross-links induced both recombination and mutations, whereas DSBs induced only recombination, and monoadducts were neither recombinogenic nor mutagenic. Although the cross-link- and DSB-induced patterns of plasmid integration and gene conversion were similar in most respects, they showed opposite asymmetries in their unidirectional conversion tracts: primarily upstream from the damage site for cross-links but downstream for DSBs. Cross-links induced targeted mutations in 5% of the repaired plasmids; all were base substitutions, primarily T --> C transitions. The major pathway of psoralen cross-link repair in yeast is error-free and involves the formation of DSB intermediates followed by homologous recombination. A fraction of the cross-links enter an error-prone pathway, resulting in mutations at the damage site.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号