首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Pairwise Assembly Determines the Intrinsic Potential for Self-Organization and Mechanical Properties of Keratin Filaments
Authors:Soichiro Yamada  Denis Wirtz  and Pierre A Coulombe
Institution:Department of Chemical Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA.
Abstract:Most type I and II keratin genes are spatially and temporally regulated in a pairwise manner in epithelial tissues, where they represent the major structural proteins. Epithelia can be partitioned into simple (single-layered) and complex (multilayered) types. We compared the structural and mechanical properties of natural keratin polymers occurring in complex (K5-K14) and simple (K8-K18) epithelia. The intrinsic properties of these distantly related keratin filaments, whether dispersed or bundled in vitro, were surprisingly similar in all respects when at high polymer concentration. When type I and II assembly partners were switched to give rise to mismatched polymers (K5-K18; K8-K14), the interfilament interactions, which determine the structural and mechanical properties of keratin polymers, were significantly altered. We also show that a K5-K16 polymer exhibits lesser elasticity than K5- K14, which may help explain the inability of K16 to fully rescue the skin blistering characteristic of K14 null mice. The property of self-interaction exhibited by keratin filaments is likely to assist their function in vivo and may account for the relative paucity of cytoplasmic and keratin-specific cross-linkers. Our findings underscore the fundamental importance of pairwise polymerization and have implications for the functional significance of keratin sequence diversity.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号