首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Support of1H NMR assignments in proteins by biosynthetically directed fractional13C-labeling
Authors:Thomas Szyperski  Dario Neri  Barbara Leiting  Gottfried Otting  Kurt Wüthrich
Institution:(1) Institut für Molekularbiologie und Biophysik, Eidgenössische Technische Hochschule-Hönggerberg, CH-8093 Zürich, Switzerland
Abstract:Summary Biosynthetically directed fractional incorporation of13C into proteins results in nonrandom13C-labeling patterns that can be investigated by analysis of the13C–13C scalar coupling fine structures in heteronuclear13C–1H or homonuclear13C–13C correlation experiments. Previously this approach was used for obtaining stereospecific1H and13C assignments of the diastereotopic methyl groups of valine and leucine. In the present paper we investigate to what extent the labeling patterns are characteristic for other individual amino acids or groups of amino acids, and can thus be used to support the1H spin-system identifications. Studies of the hydrolysates of fractionally13C-labeled proteins showed that the 59 aliphatic carbon positions in the 20 proteinogenic amino acids exhibit 16 different types of13C–13C coupling fine structures. These provide support for the assignment of the resonances of all methyl groups in a protein, which are otherwise often poorly resolved in homonuclear1H NMR spectra. In particular, besides the individual methyl assignments in Val and Leu, unambiguous distinctions are obtained between the methyl groups of Ala and Thr, and between the gamma- and delta-methyl groups of Ile. In addition to the methyl resonances, the gammaCH2 groups of Glu and Gln can be uniquely assigned because of the large coupling constant with the delta-carbon, and the identification of most of the other spin systems can be supported on the basis of coupling patterns that are common to small groups of amino acid residues.Abbreviations NOE nuclear Overhauser effect - fractional13C labeling biosynthetically directed fractional13C-labeling - TOCSY total correlation spectroscopy - ROESY rotating frame Overhauser enhancement spectroscopy - 13C,1H]-COSY two-dimensional13C–1H correlation spectroscopy - isotopomer isotope isomer - P22 c2 repressor c2 repressor of the salmonella phage P22 consisting of a polypeptide chain with 216 residues - P22 c2(1-76) N-terminal domain of the P22 c2 repressor with residues 1–76
Keywords:Protein structure  NMR assignment  Isotope labeling  Biosynthetically directed fractional13C-labeling  Stereospecific NMR assignment
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号