首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The relationship of 4-aminobutyric acid metabolism to ammoniagenesis in renal cortex
Authors:Paul R Goodyer  Gerald Lancaster  Marie Villeneuve  Charles R Scriver
Institution:Medical Research Council Genetics Group, Department of Pediatrics, Faculty of Medicine, Department of Biology, Faculty of Science and Human Genetics Center, McGill University, Montreal, Quebec, Canada
Abstract:Mitochondrial 4-aminobutyrate aminotransferase in rat kidney can utilize pyruvate as the acceptor for the amino group of 4-aminobutyrate. Renal 4-aminobutyrate aminotransferase activity at saturating equimolar concentration of 4-aminobutyrate and 5 mM pyruvate is 42.8 ± 2.5 μmol/g protein per h (mean ± S.E.M.) or 70% of 4-aminobutyrate aminotransferase activity with equimolar α-ketoglutarate. 4-Aminobutyrate aminotransferase in brain does not transaminate with pyruvate. Since pyruvate is an important mitochondrial metabolite in kidney, net disposal of glutamate via the 4-aminobutyrate pathway is possible. The renal 4-aminobutyrate pathway in the rat has other distinctive features when compared with the pathway in rat brain. Most inhibitors of rat neuronal glutamate decarboxylase were ineffective against the renal form of the enzyme, but 20 mM semicarbazide inhibited the latter form by 80% (P < 0.001) in vitro and reduced renal 4-aminobutyrate content by 75% (P < 0.001) in vivo. In the presence of 20 mM semicarbazide, ammoniagenesis by rat renal cortex slices incubated in 1 mM glutamine was inhibited 26% (P < 0.01). Semicarbazide was proportionately less effective (15% inhibition) when ammoniagenesis was stimulated (+243%) in slices prepared from chronically acidotic animals, and was no deterrant to ammoniagenesis when non-acidotic slices were incubated in supraphysiologic concentrations of 10 mM glutamine. We conclude that whereas integrity of the renal 4-aminobutyrate pathway may contribute to glutamate disposal and thus ammoniagenesis under physiologic conditions, the pathway is a passive participant in the overall process of ammoniagenesis.
Keywords:Ammoniagenesis  4-Aminobutyrate metabolism  Glutamate decarboxylase  4-Aminobutyrate aminotransferase  (Rat renal cortex)  Hepes  Address for correspondence: De Belle Laboratory for Biochemical Genetics  Montreal Children's Hospital  2300 Tupper Street  Montreal  Quebec  Canada H3H 1P3  
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号