首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Carbohydrate and pyruvic acid degradation pathways in Fusidium coccineum strains with varying levels of antibiotic synthesis]
Authors:V L Gol'dshte?n  V A Mironov  Iu E Bartoshevich  T S Minina
Abstract:A number of enzymes and reactions of glycolysis, pentose-phosphate cycle and degradation of pyruvic acid in strains of F. coccineum with various levels of antibiotic production was studied comparatively. The experiments showed that highly productive strains were characterized by higher activity of the NADP-deficient enzymes of the pentoze-phosphate cycle as compared to the low active strains. The activity levels of glycolytic enzymes, such as fructose-diphosphate-aldolase and 3-phosphoglycerolaldehydehydrogenase did not practically differ. Significant differences were found in the reactions of puryvic acid degradation: the activity of cytoplasmic pyruvatedecarboxylase in the mutant with high antibiotic production level was lower than that in the low productive strain, while oxidation of the pyruvate of the mitochondrial fraction was on the contrary more intensive than in the highly productive strain. Therefore, metabilism in the strains studied was characterized by ever-increasing biochemical changes with an increase in their antibiotic productivity. Lowering of the growth rate of the mutants as their capacity for antibiotic supersynthesis increased and subsequently the anabolic processes became more intensive was accompanied by increasing derepression of the key enzymes of carbohydrate metabolism and in particular NADR-deficient dehydrogenase of the pentose cycle and pyruvatedehydrogenase, significant for fusidin biosynthesis and providing production of the antibiotic of steroid nature by cofactor NADP-H and acetyl-KoA, the primary precursor.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号