首页 | 本学科首页   官方微博 | 高级检索  
   检索      


LOX genes in blast fungus (Magnaporthe grisea) resistance in rice
Authors:Soma S Marla  V K Singh
Institution:Molecular Biology and Genetic Engineering, G.B. Pant University of Agriculture and Technology, Pantnagar, India. soma.marla@nbpgr.ernet.in
Abstract:Plant Lipoxygenases (LOX) are known to play major role in plant immunity by providing front-line defense against pathogen-induced injury. To verify this, we isolated a full-length OsLOX3 gene and also 12 OsLOX cDNA clones from Oryza sativa indica (cultivar Pusa Basmati 1). We have examined the role played by LOXs in plant development and during attack by blast pathogen Magnaporthe grisea. Gene expression, promoter region analysis, and biochemical and protein structure analysis of isolated OsLOX3 revealed significant homology with LOX super family. Protein sequence comparison of OsLOXs revealed high levels of homology when compared with japonica rice (up to100%) and Arabidopsis (up to 64%). Isolated LOX3 gene and 12 OsLOX cDNAs contained the catalytic LOX domains much required for oxygen binding and synthesis of oxylipins. Amino acid composition, protein secondary structure, and promoter region analysis (with abundance of motifs CGTCA and TGACG) support the role of OsLOX3 gene in providing resistance to diseases in rice plants. OsLOX3 gene expression analysis of root, shoot, flag leaf, and developing and mature seed revealed organ specific patterns during rice plant development and gave evidence to association between tissue location and physiological roles played by individual OsLOXs. Increased defense activity of oxylipins was observed as demonstrated by PCR amplification of OsLOX3 gene and upon inoculation with virulent strains of M. grisea and ectopic application of methyl jasmonate in the injured leaf tissue in adult rice plants.
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号