首页 | 本学科首页   官方微博 | 高级检索  
   检索      

趋流行为下斑马鱼幼鱼的全脑成像
引用本文:吴宇斌,张仁昌,李大光,齐珂心,柴宇明,沈忱,司光伟,温泉.趋流行为下斑马鱼幼鱼的全脑成像[J].生物化学与生物物理进展,2022,49(9):1731-1740.
作者姓名:吴宇斌  张仁昌  李大光  齐珂心  柴宇明  沈忱  司光伟  温泉
作者单位:1) 中国科学技术大学,生命科学学院,中国科学院脑功能与脑疾病重点实验室,合肥 230026,2) 中国科学院生物物理研究所,脑与认知科学国家重点实验室,北京 100101,1) 中国科学技术大学,生命科学学院,中国科学院脑功能与脑疾病重点实验室,合肥 230026,1) 中国科学技术大学,生命科学学院,中国科学院脑功能与脑疾病重点实验室,合肥 230026,1) 中国科学技术大学,生命科学学院,中国科学院脑功能与脑疾病重点实验室,合肥 230026;3) 中国科学技术大学,集成影像中心,合肥微尺度物质科学国家研究中心,合肥 230026,1) 中国科学技术大学,生命科学学院,中国科学院脑功能与脑疾病重点实验室,合肥 230026,2) 中国科学院生物物理研究所,脑与认知科学国家重点实验室,北京 100101,1) 中国科学技术大学,生命科学学院,中国科学院脑功能与脑疾病重点实验室,合肥 230026;3) 中国科学技术大学,集成影像中心,合肥微尺度物质科学国家研究中心,合肥 230026;4) 中国科学技术大学,大数据学院,合肥 230026
摘    要:目的 趋流,意即在水中调整身体方向并逆流而上的能力,是一种在大多数鱼类与两栖类动物中存在的保守行为。虽然关于趋流的研究已有一段很长的历史,并且近年来斑马鱼幼鱼趋流行为的理论机制也被提出,但是分布式的神经环路是如何整合多感知信息、做出决策、并实现行为控制仍然是个未知数。对自由运动的斑马鱼进行全脑神经活动成像为理解这一困难的问题提供了特殊的机会。方法 本文开发了一种微流控装置精确控制环境水流并激发斑马鱼的趋流行为。将该微流控芯片与扩增视野光场显微镜以及追踪系统整合,从而记录自由行为下斑马鱼全脑的神经活动。结果 在整合的微流控装置中稳定观察到了斑马鱼在水流中保持自身位置不变、逆流而上等刻板的趋流行为现象。与此同时,实现了对斑马鱼幼鱼趋流行为过程中的全脑钙活动记录。本文初步发现了几个脑区的神经活动与趋流行为相关。结论 本研究第一次展示了在斑马鱼幼鱼趋流行为的同时记录全脑神经活动的技术。接下来对神经活动和行为数据的分析与建模将有助于更好地理解一种重要自然行为背后的感觉运动转换机制。

关 键 词:趋流性  斑马鱼幼鱼  微流控  光场显微镜
收稿时间:2022/7/29 0:00:00
修稿时间:2022/9/9 0:00:00

Whole Brain Imaging of Larval Zebrafish during Rheotaxis
WU Yu-Bin,ZHANG Ren-Chang,LI Da-Guang,QI Ke-Xin,CHAI Yu-Ming,SHEN Chen,SI Guang-Wei and WEN Quan.Whole Brain Imaging of Larval Zebrafish during Rheotaxis[J].Progress In Biochemistry and Biophysics,2022,49(9):1731-1740.
Authors:WU Yu-Bin  ZHANG Ren-Chang  LI Da-Guang  QI Ke-Xin  CHAI Yu-Ming  SHEN Chen  SI Guang-Wei and WEN Quan
Institution:1) Chinese Academy of Sciences Key Laboratory of Brain Function and Diseases, Division of Life Science, University of Science and Technology of China, Hefei 230026, China,2) State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China,1) Chinese Academy of Sciences Key Laboratory of Brain Function and Diseases, Division of Life Science, University of Science and Technology of China, Hefei 230026, China,1) Chinese Academy of Sciences Key Laboratory of Brain Function and Diseases, Division of Life Science, University of Science and Technology of China, Hefei 230026, China,1) Chinese Academy of Sciences Key Laboratory of Brain Function and Diseases, Division of Life Science, University of Science and Technology of China, Hefei 230026, China;3) Hefei National Laboratory for Physical Sciences at the Microscale, Center for Integrative Imaging, University of Science and Technology of China, Hefei 230026, China,1) Chinese Academy of Sciences Key Laboratory of Brain Function and Diseases, Division of Life Science, University of Science and Technology of China, Hefei 230026, China,2) State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China,1) Chinese Academy of Sciences Key Laboratory of Brain Function and Diseases, Division of Life Science, University of Science and Technology of China, Hefei 230026, China;3) Hefei National Laboratory for Physical Sciences at the Microscale, Center for Integrative Imaging, University of Science and Technology of China, Hefei 230026, China;4) School of Data Science, University of Science and Technology of China, Hefei 230026, China
Abstract:Objective Rheotaxis, namely to orient and swim against the water flow, is a conserved behavior across most fish and amphibians. While the study of rheotaxis behavior has a relatively long history, and in recent years the behavioral algorithm of rheotaxis has been described, how distributed neural circuits integrate multisensory information, make decisions, and generate counterflow motor sequences remain largely unknown. Whole brain calcium imaging of larval zebrafish during rheotaxis would provide a unique opportunity to tackle this difficult problem.Methods To this end, we developed a microfluidic device that can precisely control the water flow and elicit rheotaxis behavior. By integrating the chip with a customized light field tracking microscope, we built a system to record whole brain neural activity in freely behaving larval zebrafish during rheotaxis.Results Larval zebrafish showed reliable rheotaxis behavior in the setup, represented by prominent positional holding and counterflow swimming bouts in water flow. In the meanwhile, we successfully recorded zebrafish whole brain neural activity, from which a few brain regions were identified whose calcium signals strongly correlated with rheotaxis behavior.Conclusion Our study, for the first time, demonstrates a method for imaging whole brain neural activity in larval zebrafish while the animal is performing rheotaxis. Future analysis and modelling of the neural activity and behavioral data will deepen our understanding of sensorimotor transformation in this important naturalistic behavior.
Keywords:rheotaxis  larval zebrafish  microfluidics  light field microscope
点击此处可从《生物化学与生物物理进展》浏览原始摘要信息
点击此处可从《生物化学与生物物理进展》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号