首页 | 本学科首页   官方微博 | 高级检索  
   检索      

锰超氧化物歧化酶的催化原理与酶活性调节机制
引用本文:张旭,张蕾,许鹏琳,李天然,晁瑞青,韩正好.锰超氧化物歧化酶的催化原理与酶活性调节机制[J].生物化学与生物物理进展,2024,51(1):20-32.
作者姓名:张旭  张蕾  许鹏琳  李天然  晁瑞青  韩正好
作者单位:1)郑州大学医学院基础医学院生物化学与分子生物学系,郑州 450001,2)郑州大学体育学院,郑州 450001,3)郑州大学第一附属医院妇科,郑州 450001,4)郑州大学医学院临床医学系,郑州 450001,5)郑州大学化学学院,郑州 450001,6)河南应用技术职业学院,郑州 450042
基金项目:河南省郑州市市科技局(52110549)资助项目。
摘    要:锰超氧化物歧化酶(MnSOD)催化两分子超氧自由基歧化为分子氧和过氧化氢。超氧自由基被Mn3+SOD氧化成分子氧的反应以扩散的方式进行。超氧自由基被Mn2+SOD还原为过氧化氢的反应以快循环和慢循环两条途径平行进行。在慢循环途径中,Mn2+SOD与超氧自由基形成产物抑制复合物,然后该复合物被质子化而缓慢释放出过氧化氢。在快循环途径中,超氧自由基直接被Mn2+SOD转化为产物过氧化氢,快速循环有利于酶的复活与周转。本文提出温度是调节锰超氧化物歧化酶进入慢速或者快速循环催化途径的关键因素。随着在生理温度范围内的温度升高,慢速循环成为整个催化反应的主流,因而生理范围内的温度升高反而抑制该酶的活性。锰超氧化物歧化酶的双相酶促动力学特性可以用该酶保守活性中心的温度依赖性配位模型进行合理化解释。当温度降低时,1个水分子(或者OH-)接近Mn、甚至与Mn形成配位键,从而干扰超氧自由基与Mn形成配位键而避免形成产物抑制。因此在低温下该酶促反应主要在快循环通路中进行。最后阐述了几种化学修饰模式对该酶的调节,说明锰超氧化物歧化酶受到多种形式的快速调节(变构调节与化学修饰)。这些快速调节直接改变酶的活化状态,进而调节细胞中超氧自由基和过氧化氢的平衡与流量,为揭示锰超氧化物歧化酶和超氧自由基的生理作用提供新理论。

关 键 词:锰超氧化物歧化酶  变构调节  共价修饰  活性氧  生物氧化  温度  酶催化机制
收稿时间:2022/12/20 0:00:00
修稿时间:2023/12/2 0:00:00

The Catalytic Mechanism and Activity Modulation of Manganese Superoxide Dismutase
ZHANG Xu,ZHANG Lei,XU Peng-Lin,LI Tian-Ran,CHAO Rui-Qing and HAN Zheng-Hao.The Catalytic Mechanism and Activity Modulation of Manganese Superoxide Dismutase[J].Progress In Biochemistry and Biophysics,2024,51(1):20-32.
Authors:ZHANG Xu  ZHANG Lei  XU Peng-Lin  LI Tian-Ran  CHAO Rui-Qing and HAN Zheng-Hao
Institution:1)Department of Biochemistry and Molecular Biology, Academy of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China,2)School of Physical Education, Zhengzhou University, Zhengzhou 450001, China,3)Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, China,4)Department of Clinical Medicine, Medical School, Zhengzhou University, Zhengzhou 450001, China,5)School of Chemistry, Zhengzhou University, Zhengzhou 450001, China,6)Henan Vocational College of Applied Technology, Zhengzhou 450042, China
Abstract:Manganese superoxide dismutase catalyzes the dismutation of two molecules of superoxide radicals to one molecule of oxygen and one molecule of hydrogen peroxide. The oxidation of superoxide anion to oxygen by Mn3+SOD proceeds at a rate close to diffusion. The reduction of superoxide anion to hydrogen peroxide by Mn2+SOD can be progressed parallelly in either a fast or a slow cycle pathway. In the slow cycle pathway, Mn2+SOD forms a product inhibitory complex with superoxide anion, which is protonated and then slowly releases hydrogen peroxide out. In the fast cycle pathway, superoxide anion is directly converted into product hydrogen peroxide by Mn2+SOD, which facilitates the revival and turnover of the enzyme. We proposed for the first time that temperature is a key factor that regulates MnSOD into the slow- or fast-cycle catalytic pathway. Normally, the Mn2+ rest in the pent-coordinated state with four amino acid residues (His26, His74, His163 and Asp159) and one water (WAT1) in the active center of MnSOD. The sixth coordinate position on Mn (orange arrow) is open for water (WAT2, green) or O2? to coordinate. With the cold contraction in the active site as temperature decreases, WAT2 is closer to Mn, which may spatially interfere with the entrance of O2? into the inner sphere, and avoid O2?/Mn2+ coordination to reduce product inhibition. Low temperature compels the reaction into the faster outer sphere pathway, resulting in a higher gating ratio for the fast-cycle pathway. As the temperature increases in the physiological temperature range, the slow cycle becomes the mainstream of the whole catalytic reaction, so the increasing temperature in the physiological range inhibits the activity of the enzyme. The biphasic enzymatic kinetic properties of manganese superoxide dismutase can be rationalized by a temperature-dependent coordination model of the conserved active center of the enzyme. When the temperature decreases, a water molecule (or OH-) is close to or even coordinates Mn, which can interfere with the formation of product inhibition. So, the enzymatic reaction occurs mainly in the fast cycle pathway at a lower temperature. Finally, we describe the several chemical modifications of the enzyme, indicating that manganese superoxide dismutase can be rapidly regulated in many patterns (allosteric regulation and chemical modification). These regulatory modulations can rapidly and directly change the activation of the enzyme, and then regulate the balance and fluxes of superoxide anion and hydrogen peroxide in cells. We try to provide a new theory to reveal the physiological role of manganese superoxide dismutase and reactive oxygen species.
Keywords:manganese superoxide dismutase (MnSOD)  allosteric regulation  covalent modification  reactive oxygen species (ROS)  redox  temperature  enzyme catalytic mechanisms
点击此处可从《生物化学与生物物理进展》浏览原始摘要信息
点击此处可从《生物化学与生物物理进展》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号