首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Analysis of High-Throughput Sequencing and Annotation Strategies for Phage Genomes
Authors:Matthew R Henn  Matthew B Sullivan  Nicole Stange-Thomann  Marcia S Osburne  Aaron M Berlin  Libusha Kelly  Chandri Yandava  Chinnappa Kodira  Qiandong Zeng  Michael Weiand  Todd Sparrow  Sakina Saif  Georgia Giannoukos  Sarah K Young  Chad Nusbaum  Bruce W Birren  Sallie W Chisholm
Institution:1. The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America.; 2. Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America.;Universidad Miguel Hernandez, Spain
Abstract:

Background

Bacterial viruses (phages) play a critical role in shaping microbial populations as they influence both host mortality and horizontal gene transfer. As such, they have a significant impact on local and global ecosystem function and human health. Despite their importance, little is known about the genomic diversity harbored in phages, as methods to capture complete phage genomes have been hampered by the lack of knowledge about the target genomes, and difficulties in generating sufficient quantities of genomic DNA for sequencing. Of the approximately 550 phage genomes currently available in the public domain, fewer than 5% are marine phage.

Methodology/Principal Findings

To advance the study of phage biology through comparative genomic approaches we used marine cyanophage as a model system. We compared DNA preparation methodologies (DNA extraction directly from either phage lysates or CsCl purified phage particles), and sequencing strategies that utilize either Sanger sequencing of a linker amplification shotgun library (LASL) or of a whole genome shotgun library (WGSL), or 454 pyrosequencing methods. We demonstrate that genomic DNA sample preparation directly from a phage lysate, combined with 454 pyrosequencing, is best suited for phage genome sequencing at scale, as this method is capable of capturing complete continuous genomes with high accuracy. In addition, we describe an automated annotation informatics pipeline that delivers high-quality annotation and yields few false positives and negatives in ORF calling.

Conclusions/Significance

These DNA preparation, sequencing and annotation strategies enable a high-throughput approach to the burgeoning field of phage genomics.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号