首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Contribution of Dysferlin Deficiency to Skeletal Muscle Pathology in Asymptomatic and Severe Dystroglycanopathy Models: Generation of a New Model for Fukuyama Congenital Muscular Dystrophy
Authors:Motoi Kanagawa  Zhongpeng Lu  Chiyomi Ito  Chie Matsuda  Katsuya Miyake  Tatsushi Toda
Institution:1. Division of Neurology/Molecular Brain Science, Kobe University Graduate School of Medicine, Kobe, Japan.; 2. Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan.; 3. Department of Histology and Cell Biology, School of Medicine, Kagawa University, Ikenobe, Miki, Kagawa, Japan.; Rutgers University -New Jersey Medical School, United States of America,
Abstract:Defects in dystroglycan glycosylation are associated with a group of muscular dystrophies, termed dystroglycanopathies, that include Fukuyama congenital muscular dystrophy (FCMD). It is widely believed that abnormal glycosylation of dystroglycan leads to disease-causing membrane fragility. We previously generated knock-in mice carrying a founder retrotransposal insertion in fukutin, the gene responsible for FCMD, but these mice did not develop muscular dystrophy, which hindered exploring therapeutic strategies. We hypothesized that dysferlin functions may contribute to muscle cell viability in the knock-in mice; however, pathological interactions between glycosylation abnormalities and dysferlin defects remain unexplored. To investigate contributions of dysferlin deficiency to the pathology of dystroglycanopathy, we have crossed dysferlin-deficient dysferlin sjl/sjl mice to the fukutin-knock-in fukutin Hp/− and Large-deficient Large myd/myd mice, which are phenotypically distinct models of dystroglycanopathy. The fukutin Hp/− mice do not show a dystrophic phenotype; however, (dysferlin sjl/sjl: fukutin Hp/−) mice showed a deteriorated phenotype compared with (dysferlin sjl/sjl: fukutin Hp/+) mice. These data indicate that the absence of functional dysferlin in the asymptomatic fukutin Hp/− mice triggers disease manifestation and aggravates the dystrophic phenotype. A series of pathological analyses using double mutant mice for Large and dysferlin indicate that the protective effects of dysferlin appear diminished when the dystrophic pathology is severe and also may depend on the amount of dysferlin proteins. Together, our results show that dysferlin exerts protective effects on the fukutin Hp/− FCMD mouse model, and the (dysferlin sjl/sjl: fukutin Hp/−) mice will be useful as a novel model for a recently proposed antisense oligonucleotide therapy for FCMD.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号