首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Tightly Regulated and Homogeneous Transgene Expression in Human Adipose-Derived Mesenchymal Stem Cells by Lentivirus with Tet-Off System
Authors:Hiroyuki Moriyama  Mariko Moriyama  Kei Sawaragi  Hanayuki Okura  Akihiro Ichinose  Akifumi Matsuyama  Takao Hayakawa
Institution:1. Pharmaceutical Research and Technology Institute, Kinki University, Higashi-Osaka, Osaka, Japan.; 2. Platform for Realization of Regenerative Medicine, Foundation for Biomedical Research and Innovation, Chuo-ku, Kobe, Hyogo, Japan.; 3. Department of Plastic Surgery, Kobe University Hospital, Chuo-ku, Kobe, Hyogo, Japan.; Universidade de Sao Paulo, Brazil,
Abstract:Genetic modification of human adipose tissue–derived multilineage progenitor cells (hADMPCs) is highly valuable for their exploitation in therapeutic applications. Here, we have developed a novel single tet-off lentiviral vector platform. This vector combines (1) a modified tetracycline (tet)-response element composite promoter, (2) a multi-cistronic strategy to express an improved version of the tet-controlled transactivator and the blasticidin resistance gene under the control of a ubiquitous promoter, and (3) acceptor sites for easy recombination cloning of the gene of interest. In the present study, we used the cytomegalovirus (CMV) or the elongation factor 1 α (EF-1α) promoter as the ubiquitous promoter, and EGFP was introduced as the gene of interest. hADMPCs transduced with a lentiviral vector carrying either the CMV promoter or the EF-1α promoter were effectively selected by blasticidin without affecting their stem cell properties, and EGFP expression was strictly regulated by doxycycline (Dox) treatment in these cells. However, the single tet-off lentiviral vector carrying the EF-1α promoter provided more homogenous expression of EGFP in hADMPCs. Intriguingly, differentiated cells from these Dox-responsive cell lines constitutively expressed EGFP only in the absence of Dox. This single tet-off lentiviral vector thus provides an important tool for applied research on hADMPCs.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号