首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Kinin B1 Receptor Enhances the Oxidative Stress in a Rat Model of Insulin Resistance: Outcome in Hypertension,Allodynia and Metabolic Complications
Authors:Jenny Pena Dias  Sébastien Talbot  Jacques Sénécal  Pierre Carayon  Réjean Couture
Institution:1. Department of Physiology, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada.; 2. Sanofi-Aventis R&D, Montpellier, France.;Louisiana State University, United States of America
Abstract:

Background

Kinin B1 receptor (B1R) is induced by the oxidative stress in models of diabetes mellitus. This study aims at determining whether B1R activation could perpetuate the oxidative stress which leads to diabetic complications.

Methods and Findings

Young Sprague-Dawley rats were fed with 10% D-Glucose or tap water (controls) for 8–12 weeks. A selective B1R antagonist (SSR240612) was administered acutely (3–30 mg/kg) or daily for a period of 7 days (10 mg/kg) and the impact was measured on systolic blood pressure, allodynia, protein and/or mRNA B1R expression, aortic superoxide anion (O2 •−) production and expression of superoxide dismutase (MnSOD) and catalase. SSR240612 reduced dose-dependently (3–30 mg/kg) high blood pressure in 12-week glucose-fed rats, but had no effect in controls. Eight-week glucose-fed rats exhibited insulin resistance (HOMA index), hypertension, tactile and cold allodynia and significant increases of plasma levels of glucose and insulin. This was associated with higher aortic levels of O2 •−, NADPH oxidase activity, MnSOD and catalase expression. All these abnormalities including B1R overexpression (spinal cord, aorta, liver and gastrocnemius muscle) were normalized by the prolonged treatment with SSR240612. The production of O2 •− in the aorta of glucose-fed rats was also measured in the presence and absence of inhibitors (10–100 µM) of NADPH oxidase (apocynin), xanthine oxidase (allopurinol) or nitric oxide synthase (L-NAME) with and without SarD-Phe8]des-Arg9-BK (20 µM; B1R agonist). Data show that the greater aortic O2 •− production induced by the B1R agonist was blocked only by apocynin.

Conclusions

Activation of kinin B1R increased O2 •− through the activation of NADPH oxidase in the vasculature. Prolonged blockade of B1R restored cardiovascular, sensory and metabolic abnormalities by reducing oxidative stress and B1R gene expression in this model.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号