首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Lactobacillus crispatus Dominant Vaginal Microbiome Is Associated with Inhibitory Activity of Female Genital Tract Secretions against Escherichia coli
Authors:Jeny P Ghartey  Benjamin C Smith  Zigui Chen  Niall Buckley  Yungtai Lo  Adam J Ratner  Betsy C Herold  Robert D Burk
Abstract:

Objective

Female genital tract secretions inhibit E. coli ex vivo and the activity may prevent colonization and provide a biomarker of a healthy microbiome. We hypothesized that high E. coli inhibitory activity would be associated with a Lactobacillus crispatus and/or jensenii dominant microbiome and differ from that of women with low inhibitory activity.

Study Design

Vaginal swab cell pellets from 20 samples previously obtained in a cross-sectional study of near-term pregnant and non-pregnant healthy women were selected based on having high (>90% inhibition) or low (<20% inhibition) anti-E. coli activity. The V6 region of the 16S ribosomal RNA gene was amplified and sequenced using the Illumina HiSeq 2000 platform. Filtered culture supernatants from Lactobacillus crispatus, Lactobacillus iners, and Gardnerella vaginalis were also assayed for E. coli inhibitory activity.

Results

Sixteen samples (10 with high and 6 with low activity) yielded evaluable microbiome data. There was no difference in the predominant microbiome species in pregnant compared to non-pregnant women (n = 8 each). However, there were significant differences between women with high compared to low E. coli inhibitory activity. High activity was associated with a predominance of L. crispatus (p<0.007) and culture supernatants from L. crispatus exhibited greater E. coli inhibitory activity compared to supernatants obtained from L. iners or G. vaginalis. Notably, the E. coli inhibitory activity varied among different strains of L. crispatus.

Conclusion

Microbiome communities with abundant L. crispatus likely contribute to the E. coli inhibitory activity of vaginal secretions and efforts to promote this environment may prevent E. coli colonization and related sequelae including preterm birth.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号