首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The Tetraspanin CD9 Influences the Adhesion, Spreading, and Pericellular Fibronectin Matrix Assembly of Chinese Hamster Ovary Cells on Human Plasma Fibronectin
Authors:George A Cook  Deborah A Wilkinson  Joseph T Crossno  Jr  Rajendra Raghow  Lisa K Jennings  
Institution:Department of Medicine, University of Tennessee, Memphis, Tennessee, 38163, USA.
Abstract:The role of CD9 in cell adhesion and spreading on adhesive proteins was investigated using a transfected Chinese hamster ovary (CHO) cell system. CD9 cell surface expression resulted in reduced adhesion and increased spreading on fibronectin (Fn). Whereas mock-transfected (mock CHO) and na?ve CHO cells assumed a typical fibroblast spindle shape morphology, CD9-transfected (CD9-CHO) cells were polygonal with many filipodial projections and exhibited a twofold greater surface area. The spread morphology of CD9-CHO cells, but not mock CHO cells, was inhibited by PB1 mAb blockade of alpha(5)beta(1), suggesting that the coexpression of alpha(5)beta(1) and CD9 influenced cell activity on Fn. The second extracellular loop of CD9 was implicated in regulation of adhesion since reduced CD9-CHO cell adhesion on Fn was reversed by either anti-CD9 antibody ligation to the second extracellular loop or with cells expressing a CD9 mutant lacking the second extracellular loop domain. Using cell adhesion assays and ELISA, we demonstrated CD9 binding to the HEP2/IIICS region of Fn. Finally, CD9 expression resulted in a twofold reduction in Fn-rich pericellular matrix assembly. Our observations show that CD9 dramatically influences CHO cell interactions with Fn and suggest that CD9 has an important role in modulating cell-extracellular matrix interactions.
Keywords:tetraspanins  cell adhesion  Chinese hamster ovary cells  extracellular matrix  integrins  membrane proteins
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号