首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Selective transport of Pb2+ and Cd2+ across a phospholipid bilayer by a cyclohexanemonocarboxylic acid-capped 15-crown-5 ether
Authors:Hamidinia Shawn A  Steinbaugh Gregory E  Erdahl Warren L  Taylor Richard W  Pfeiffer Douglas R
Institution:Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH 43210, United States.
Abstract:A cyclohexanemonocarboxylic acid-capped 15-crown-5 ether was synthesized and found to be effective as an ionophore for Pb2+ and Cd2+, transporting them across a phospholipid bilayer membrane. Transport studies were carried out using 1-palmitoyl-2-oleoyl-sn-glycerophosphatidylcholine (POPC) vesicles containing the chelating indicator 2-(2-bis(carboxymethyl)amino-5-methylphenoxy]methyl)-6-methoxy-8-bis(carboxymethyl)aminoquinoline (Quin-2). Data obtained at pH 7.0 using this system, show that the synthetic ionophore transports divalent cations with the selectivity sequence Pb2+ > Cd2+ > Zn2+ > Mn2+ > Co2+ > Ni2+ > Ca2+ > Sr2+. Selectivity factors, based on the ratio of individual initial cation transport rates, are 280 (Pb2+/Ca2+), 62 (Pb2+/Zn2+), 68 (Cd2+/Ca2+), and 16 (Cd2+/Zn2+). Plots of log initial rate versus logM(n+) or log ionophore concentration suggest that Pb2+ and Cd2+ are transported primarily as a 1:1 cation-ionophore complex, but that complexes with other stoichiometries may also be present. The ionophore transports Pb2+ and Cd2+ by a predominantly electrogenic mechanism, based upon an enhanced rate of transport that is produced by agents which dissipate transmembrane potentials. The rate of Pb2+ transport shows a biphasic pH dependence with the maximum occurring at pH approximately 6.5. The high selectivity for Pb2+ and Cd2+ displayed by the cyclohexanecarboxylic acid-capped 15-crown-5 ether suggests potential applications of this ionophore for the treatment of Pb and Cd intoxication, and removal of these heavy metals from wastewater.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号