首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Mutations in Hepatitis C Virus E2 Located outside the CD81 Binding Sites Lead to Escape from Broadly Neutralizing Antibodies but Compromise Virus Infectivity
Authors:Zhen-yong Keck  Sophia H Li  Jinming Xia  Thomas von Hahn  Peter Balfe  Jane A McKeating  Jeroen Witteveldt  Arvind H Patel  Harvey Alter  Charles M Rice  Steven K H Foung
Institution:Department of Pathology, Stanford University, Stanford, California 94305,1. Center for the Study of Hepatitis C, The Rockefeller University, New York, New York 10065,2. Institute of Biomedical Research, University of Birmingham, Birmingham, United Kingdom,3. MRC Virology Unit, Institute of Virology, University of Glasgow, Church Street, Glasgow G115JR, United Kingdom,4. Infectious Disease Section, Department of Transfusion Medicine, NIH, Bethesda, Maryland 208925.
Abstract:Broadly neutralizing antibodies are commonly present in the sera of patients with chronic hepatitis C virus (HCV) infection. To elucidate possible mechanisms of virus escape from these antibodies, retrovirus particles pseudotyped with HCV glycoproteins (HCVpp) isolated from sequential samples collected over a 26-year period from a chronically infected patient, H, were used to characterize the neutralization potential and binding affinity of a panel of anti-HCV E2 human monoclonal antibodies (HMAbs). Moreover, AP33, a neutralizing murine monoclonal antibody (MAb) to a linear epitope in E2, was also tested against selected variants. The HMAbs used were previously shown to broadly neutralize HCV and to recognize a cluster of highly immunogenic overlapping epitopes, designated domain B, containing residues that are also critical for binding of viral E2 glycoprotein to CD81, a receptor essential for virus entry. Escape variants were observed at different time points with some of the HMAbs. Other HMAbs neutralized all variants except for the isolate 02.E10, obtained in 2002, which was also resistant to MAb AP33. The 02.E10 HCVpp that have reduced binding affinities for all antibodies and for CD81 also showed reduced infectivity. Comparison of the 02.E10 nucleotide sequence with that of the strain H-derived consensus variant, H77c, revealed the former to have two mutations in E2, S501N and V506A, located outside the known CD81 binding sites. Substitution A506V in 02.E10 HCVpp restored binding to CD81, but its antibody neutralization sensitivity was only partially restored. Double substitutions comprising N501S and A506V synergistically restored 02.E10 HCVpp infectivity. Other mutations that are not part of the antibody binding epitope in the context of N501S and A506V were able to completely restore neutralization sensitivity. These findings showed that some nonlinear overlapping epitopes are more essential than others for viral fitness and consequently are more invariant during earlier years of chronic infection. Further, the ability of the 02.E10 consensus variant to escape neutralization by the tested antibodies could be a new mechanism of virus escape from immune containment. Mutations that are outside receptor binding sites resulted in structural changes leading to complete escape from domain B neutralizing antibodies, while simultaneously compromising viral fitness by reducing binding to CD81.Over 170 million people worldwide are infected with hepatitis C virus (HCV). While acute infection is usually silent, the majority of infected individuals develop persistent infections. Approximately 30% of acute infections are spontaneously resolved. Cellular immunity is clearly necessary, as robust and sustained CD4+ and CD8+ T-cell responses are temporally associated with virus clearance leading to disease resolution (7). Persistent infection is associated with an inability to sustain a vigorous CD4+ response. The role of antibodies in disease resolution is increasingly recognized but less understood. Clinical trials with gamma globulin administration prior to the discovery of HCV achieved prophylactic effects on transfusion-associated non-A, non-B hepatitis cases, most of which were subsequently shown to be HCV related (28, 46). Animal studies showed that gamma globulin therapy delayed the onset of acute HCV infection (29). Preincubation of the infectious inoculum with pooled gamma globulin from HCV-positive donors prevented infection in challenged chimpanzees (55). The protection afforded by gamma globulin preparations correlated with antibody titers blocking infection of target cells with retroviral pseudotype particles expressing HCV E1E2 glycoproteins (HCVpp) (4). In addition, chimpanzees vaccinated with recombinant HCV E2 glycoproteins were protected against infection in a manner that correlated with serum antibody titers inhibiting binding of E2 to CD81 (19, 40, 41), a receptor required for entry by both HCVpp and cell culture infectious HCV (HCVcc) (5, 17, 33, 53, 56). Two recent studies observed that patients with strong and progressive neutralizing antibody responses demonstrated decreasing viremia and control of viral replication (31, 39). A third study, however, reported the lack of neutralizing antibodies to heterologous HCVpp isolates in the sera of patients who eventually controlled their viremia during acute HCV infection (21). Furthermore, 104 to 106 virions per milliliter of serum are usually detected during chronic infection in the presence of high titers of serum neutralizing antibodies.A driver of persistent viremia is a high degree of viral variants, or “quasispecies.” Owing to a high viral replication rate (1012 copies per day) and an error-prone viral RNA-dependent polymerase, the estimated mutation rate is 2.0 × 10−3 base substitutions per genome per year (9, 34). This high rate of quasispecies formation contributes to the emergence of escape viral variants from immune surveillance. Mutations within major histocompatibility complex class I-restricted HCV epitopes lead to escape from cytotoxic T-cell responses (7). Mutations leading to escape from humoral immunity, particularly in E2 hypervariable region 1 (HVR1), known to be the target of host neutralizing antibodies, are also documented (10, 22, 30, 45). Protection in chimpanzees is achieved following challenge with an inoculum that had been preincubated with antibodies to autologous HVR1 (10). Yet over time, these isolate-specific antibodies drive the emergence of new viral variants that the concurrent immune response poorly recognizes. A study of sequential HCV isolates obtained from a patient, H, who was meticulously followed for a 26-year period starting 3 weeks after exposure to the virus, showed that the serial HCV variants were poorly neutralized by the concurrent serum antibodies (52). Escape was associated in part with mutations in HVR1 leading to decreased binding and neutralization by monoclonal antibodies (MAbs) to HVR1 that were produced against the first isolate obtained from this patient.Broadly neutralizing antibodies are usually directed against conformational epitopes within E2 (2, 8, 13, 14, 44). We previously described a panel of neutralizing and nonneutralizing human MAbs (HMAbs) to conformational epitopes on HCV E2 that were derived from peripheral B cells of individuals infected with either genotype 1a or 1b HCV. Cross-competition analyses delineated at least three immunogenic clusters of overlapping epitopes with distinct functions and properties (23-25). All nonneutralizing antibodies fell within one cluster, designated domain A (24). Neutralizing HMAbs segregated into two clusters, designated domains B and C, with domain B HMAbs having greater potency than domain C HMAbs in blocking infection with the strain JFH1 genotype 2a HCVcc (23, 25).The epitopes of increasing numbers of anti-HCV E2 neutralizing antibodies include residues that are also critical for binding of E2 to CD81. All of our domain B HMAbs inhibit binding of E2 to CD81. Alanine scanning mutagenesis of E2 regions implicated in binding to CD81 identified two highly conserved residues, G530 and D535, that are needed for all domain B antibodies, with a subset also requiring W529 (25, 26, 36). Other laboratories have isolated similar neutralizing antibodies to epitopes containing these residues (20, 32, 38). A similar panel of E2 mutants was previously used to identify five amino acid residues, W420, Y527, W529, G530, and D535, that are essential for interaction with CD81 (37, 42). These findings show that domain B antibodies exert their potent neutralization of HCV infectivity by directly competing with CD81 for binding to E2. It also explains the breadth of neutralization against different HCV genotypes and subtypes for many of these antibodies, since any changes in their epitopes could affect CD81 binding and virus entry. The conserved nature of this cluster of overlapping epitopes makes them of interest for vaccine and immunotherapeutic development. A critical question involves the likelihood that immune selection could lead to escape from neutralization by domain B HMAbs. The series of sequential HCVpp variants derived from patient H over a span of 26 years (52) provide a unique resource for studying the extent and mechanisms of virus escape from broadly neutralizing antibodies. This report describes evidence of escape from immune containment of some but not other domain B HMAbs. Interestingly, a single H variant with reduced HCVpp infectivity and diminished CD81 binding was resistant to neutralization by all domain B antibodies as well as MAb AP33, recognizing a highly conserved linear epitope spanning residues 413 to 420 (35, 47). Sequence analysis revealed multiple mutations on E2 at a considerable distance from CD81 binding residues that could account for the immune escape, although it is unlikely that they are part of the domain B HMAb or the AP33 epitopes. Site-directed substitutions at these mutations restored neutralization sensitivity to all antibodies and CD81 dependency.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号