首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Altered Protein Metabolism in Infection by the Late tsB11 Mutant of Simian Virus 40
Authors:Peter Tegtmeyer  James A Robb  Chantal Widmer  and Harvey L Ozer
Institution:Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, 44106;Department of Pathology, University of California, San Diego, La Jolla, California 92037;The Worcester Foundation for Experimental Biology, Shrewsbury, Massachusetts 01545
Abstract:The DNA of the temperature-sensitive mutant tsB11 is replicated at the same rate as the DNA of wild-type virus in infection at the restrictive temperature. The progeny mutant DNA cannot be distinguished from wild-type DNA by gel electrophoresis and is assembled into a nucleoprotein complex with the same velocity sedimentation characteristics as the wild-type complex. Analysis of in vivo protein synthesis by sodium dodecyl sulfate polyacrylamide gel electrophoresis and immunoprecipitation techniques demonstrated that the capsid components VP1, VP2, and VP3 of the mutant and wild-type virus are synthesized at a similar rate, but VP1 fails to accumulate within cells infected by tsB11. Furthermore, VP1 is located predominantly in the cytoplasmic rather than in the nuclear fraction of extracts from cells infected by the mutant. Immunofluorescent studies localized virion antigen within the nucleolus as well as the cytoplasm. The altered intracellular distribution and stability of VP1 suggest that it may be the mutant protein of tsB11. The synthesis of a 72,000 dalton protein is consistently induced in significant quantity in cells infected by tsB11 at the restrictive temperature. A protein of the same apparent molecular weight is present in smaller quantities in uninfected cells and is only slightly increased in quantity in cells infected by wild-type virus.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号