首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Soluble HLA-G Inhibits Myeloid Dendritic Cell Function in HIV-1 Infection by Interacting with Leukocyte Immunoglobulin-Like Receptor B2
Authors:Jinghe Huang  Patrick Burke  Yue Yang  Katherine Seiss  Jill Beamon  Thai Cung  Ildiko Toth  Florencia Pereyra  Mathias Lichterfeld  Xu G Yu
Institution:Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts,1. Infectious Disease Division, Massachusetts General Hospital, Boston, Massachusetts2.
Abstract:Dendritic cells represent a specialized class of professional antigen-presenting cells that are responsible for priming and maintaining antigen-specific effector cell responses and regulating immune activation by cytokine secretion. In HIV-1 infection, myeloid dendritic cells are highly dysfunctional, but mechanisms contributing to their functional alterations are not well defined. Here, we show that soluble molecules of the nonclassical major histocompatibility complex class Ib (MHC-Ib) antigen HLA-G are highly upregulated in the plasma during progressive HIV-1 infection, while levels of membrane-bound HLA-G surface expression on dendritic cells, monocytes, and T cells only slightly differ among HIV-1 progressors, HIV-1 elite controllers, and HIV-1-negative persons. These elevated levels of soluble HLA-G in progressive HIV-1 infection likely result from increased secretion of intracellularly stored HLA-G molecules in monocytes and dendritic cells and contribute to a functional disarray of dendritic cells by inhibiting their antigen-presenting properties, while simultaneously enhancing their secretion of proinflammatory cytokines. Interestingly, we observed that these immunoregulatory effects of soluble HLA-G were mainly mediated by interactions with the myelomonocytic HLA class I receptor leukocyte immunoglobulin-like receptor B2 (LILRB2; ILT4), while binding of soluble HLA-G to its alternative high-affinity receptor, LILRB1 (ILT2), appeared to be less relevant for its immunomodulatory functions on dendritic cells. Overall, these results demonstrate a critical role for soluble HLA-G in modulating the functional characteristics of professional antigen-presenting cells in progressive HIV-1 infection and suggest that soluble HLA-G might represent a possible target for immunotherapeutic interventions in HIV-1-infected persons.The hallmark of HIV-1-associated immune deficiency is a progressive decline of T-cell immunity; however, HIV-1 infection also involves dysfunction of multiple other components of the innate and adaptive immune systems, including B cells (25, 28), NK cells (22), and NK T (NKT) cells (30). Perhaps most importantly, HIV-1 infection leads to functional deficiencies of myeloid dendritic cells (mDC) (2, 8, 10), which as professional antigen-presenting cells have critical roles in priming and maintaining adaptive and innate effector cell responses and in regulating immune activation (4). In progressive HIV-1 infection, myeloid dendritic cells show an activated phenotype, with upregulation of costimulatory molecules and maturation markers (2, 6), but their functional antigen-presenting properties are poor (7), which may be responsible for the dysfunctional properties of antigen-specific T- and B-cell responses during HIV-1 infection. In addition, mDC in progressive HIV-1 infection seem to secrete higher levels of proinflammatory cytokines (2) and by this mechanism may contribute to generalized activation and exhaustion of the immune system, two events that play important roles in the pathogenesis of HIV-1 infection (9). The molecular pathways that contribute to dendritic cell dysfunction in HIV-1 infection, however, are unclear, but their understanding holds promise for a targeted manipulation of dendritic cells for immunotherapeutic interventions.HLA-G represents a nonclassical major histocompatibility complex class Ib (MHC-Ib) antigen, which, in comparison to classical HLA class I molecules, has limited functions for antigen presentation and restriction of T-cell immune responses but important immunoregulatory properties during various infectious, inflammatory, and malignant diseases (5). Unlike expression of classical HLA class I molecules, expression of HLA-G is mostly limited to fetal trophoblastic tissues (15), but ectopic expression of HLA-G on T cells (11), monocytes, and dendritic cells (3) has been documented in a variety of pathological conditions, including HIV-1 infection (16, 19). Moreover, it is well recognized that alternative splicing of HLA-G can lead to soluble isoforms which cause systemic immunoregulatory effects in the absence of localized tissue expression. The highest-affinity receptors for HLA-G include leukocyte immunoglobulin-like receptor B1 (LILRB1; ILT2) and LILRB2 (ILT4), two members of the LILR family, as well as the NK cell receptor KIR2DL4. By interacting with such receptors, HLA-G can induce a variety of immunomodulatory effects, including inhibition of antigen-specific T-cell (17) and NK cell responses (27). How HLA-G changes the functional profile of dendritic cells during chronic viral diseases such as HIV-1 infection remains unknown.In the present study, we analyzed immunomodulatory effects of HLA-G in individuals with different rates of HIV-1 disease progression. Our studies show that soluble HLA-G in the plasma, but not membrane-bound HLA-G expression on leukocytes, is strikingly upregulated during progressive HIV-1 infection. This soluble HLA-G critically contributes to the functional deficiencies of myeloid dendritic cells by interacting with ILT4 (LILRB2), while interactions with its other high-affinity receptor, ILT2, seem to be less relevant. Overall, these data show that binding interactions between ILT4 and soluble HLA-G play a key role in mediating dendritic cell dysfunction in progressive HIV-1 infection and might represent a possible target for immunotherapeutic interventions in HIV-1 infection.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号