首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Optimization of Chlorpyrifos Degradation by Assembled Bacterial Consortium Using Response Surface Methodology
Authors:Elizabeth Mary John  J Sreekumar
Institution:1. School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, India;2. (Agri. Statistics) Central Tuber Crops Research Institute (ICAR), Thiruvananthapuram, Kerala, India
Abstract:Chlorpyrifos is a commonly used organophosphate pesticide. Its extensive use and associated serious soil and water contamination have gained increasing environmental concern. Biodegradation is a promising way to remediate chlorpyrifos contamination. There are many reports on various chlorpyrifos degrading microorganisms, but only a few on biodegradation of chlorpyrifos by consortia. Hence, the present study attempted to assemble a novel bacterial consortium C5 for the biodegradation of chlorpyrifos. The 16S rRNA gene-based molecular analysis revealed that the bacterial consortium consisted of Staphylococcus warneri CPI 2, Pseudomonas putida CPI 9 and Stenotrophomonas maltophilia CPI 15. Optimization of chlorpyrifos degradation by the consortium C5, using a Box–Behnken design, was carried out taking into account four important variables: temperature, pH, the initial concentration of chlorpyrifos and time of incubation. C5 is capable of giving 90% degradation of chlorpyrifos (125 ppm) in 8 days of incubation under optimized conditions of pH (7) and temperature (30°C). Growth curve and degradation study under optimized conditions confirmed that consortium could improve the biodegradation potential. From these results, we conclude that the novel consortium C5 of three species can be used to eliminate chlorpyrifos from various environmental compartments and can be implemented in bioreactors in a cost-effective, safe and environmentally friendly manner.
Keywords:Bioremediation  box–behnken design  consortium  pesticide degradation  Stenotrophomonas maltophilia
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号