首页 | 本学科首页   官方微博 | 高级检索  
   检索      

北京西山绿化树种秋季滞纳PM2.5能力及其与叶表面AFM特征的关系
引用本文:陈波,刘海龙,赵东波,陈鹏飞,鲁绍伟,李少宁.北京西山绿化树种秋季滞纳PM2.5能力及其与叶表面AFM特征的关系[J].生态学杂志,2016,27(3):777-784.
作者姓名:陈波  刘海龙  赵东波  陈鹏飞  鲁绍伟  李少宁
作者单位:1.北京市农林科学院林业果树研究所/林果业生态环境功能提升协同创新中心, 北京 100093;;2.北京市西山试验林场, 北京 100093
基金项目:本文由国家林业局林业公益性行业科研专项(20130430101)资助
摘    要:以北京西山6种绿化树种白皮松、油松、柳树、五角枫、银杏、山杨为对象,应用气溶胶再发生器对植物叶片秋季PM2.5吸附量进行定量研究,同时应用原子力显微镜(AFM)观察叶表面微形态特征,分析了叶表面粗糙度等参数,阐释了各树种叶片吸附PM2.5的机制.结果表明: 不同树种单位叶面积PM2.5吸附量排序为白皮松(2.44±0.22 μg·cm-2)>油松(2.40±0.23 μg·cm-2)>柳树(1.62±0.09 μg·cm-2)>五角枫(1.23±0.01 μg·cm-2)>银杏(1.00±0.07 μg·cm-2)>山杨(0.97±0.03 μg·cm-2);从秋季不同月份来看,不同树种单位叶面积PM2.5吸附量表现为11月(2.33±0.43 μg·cm-2)>10月(1.62±0.64 μg·cm-2)>9月(1.51±0.50 μg·cm-2).白皮松和油松有大量凹陷和突起,相对高差较大,粗糙度较大,吸滞PM2.5能力强;柳树和五角枫叶片有褶皱,粗糙度相对较高,分布有大量的突起和凹陷,吸滞PM2.5能力居中;银杏和山杨因其叶表面平滑、气孔多为长圆形,粗糙度较小,吸滞PM2.5能力较弱.不同树种正背面粗糙度平均值为白皮松(149.91±16.38 nm)>油松(124.47±10.52 nm)>柳树(98.85±5.36 nm)>五角枫(93.74±21.75 nm)>银杏(80.84±0.88 nm)>山杨(67.72±8.66 nm),这与不同树种单位叶面积PM2.5吸附量排序完全一致,叶片粗糙度与单位叶面积PM2.5吸附量呈显著正相关(R2=0.9498).为提高城市植被的环境效应,可选择叶表面形态有利于吸滞PM2.5等颗粒物的树种.

关 键 词:园林绿化树种  吸滞能力  PM2.5  叶表面形态  原子力显微镜(AFM)
收稿时间:2015-06-28

Relationship between retention PM25 and leaf surface AFM character of six greening trees during autumn in Beijing West Mountain
CHEN Bo,LIU Hai-long,ZHAO Dong-bo,CHEN Peng-fei,LU Shao-wei,LI Shao-ning.Relationship between retention PM25 and leaf surface AFM character of six greening trees during autumn in Beijing West Mountain[J].Chinese Journal of Ecology,2016,27(3):777-784.
Authors:CHEN Bo  LIU Hai-long  ZHAO Dong-bo  CHEN Peng-fei  LU Shao-wei  LI Shao-ning
Institution:1.Forestry and Pomology Institute, Beijing Academy of Agriculture and Forestry Sciences/Horticulture Ecological Environment Function Promoted Collaborative Innovation Center, Beijing 100093, China;
;2. Xishan Experimental Forest Farm of Beijing, Beijing 100093, China
Abstract:This study investigated PM2.5 adsorption by leaves of six tree species (Pinus bungeana, Pinus tabuliformis, Salix babylonica, Acer mono, Ginkgo biloba, Populus davidiana) in the West Mountain of Beijing. An aerosol generator was used for quantitative determination of PM2.5 adsorption. Atomic force microscopy (AFM) was used to determine micro morphology characteristics on the leaf surface, including roughness parameters and the PM2.5 absorption mechanism of tree leaves. The results showed that the PM2.5 adsorption capacity per unit leaf area was as follows: P. bungeana (2.44±0.22 μg·cm-2) > P. tabuliformis (2.40±0.23 μg·cm-2) > S. babylonica (1.62±0.09 μg·cm-2) > A. mono (1.23±0.01 μg·cm-2) > G. biloba (1.00±0.07 μg·cm-2) > P. davi-diana (0.97±0.03 μg·cm-2). In autumn, PM2.5 adsorption capacity per unit leaf area was as follows: November (2.33±0.43 μg·cm-2) > October (1.62±0.64 μg·cm-2) > September (1.51±0.50 μg·cm-2). The leaves of P. bungeana and P. tabuliformis were rugged with many recesses and protrusions, large relative height difference, and high roughness, and their absorption ability of PM2.5 was strong. The leaves of S. babylonica and A. mono had folded leaf lamina and were covered by fine hairs, and their roughness was relatively high, with many protrusions and fillisters on the leaf surface. Since G. biloba and P. davidiana had smooth leaves, mostly oblong stomata and low roughness, their PM2.5 absorption ability was weaker. The ranking of average roughness on the ada-xial and abaxial side of the leaves was as follows: P. bungeana (149.91±16.38 nm) > P. tabuliformis (124.47±10.52 nm) > S. babylonica (98.85±5.36 nm) > A. mono (93.74±21.75 nm) > G. biloba (80.84±0.88 nm) > P. davidiana (67.72±8.66 nm). This accorded with PM2.5 adsorption per unit leaf area, and leaf roughness had a significant positive correlation with PM2.5 adsorption amount per unit leaf area as well (R2=0.9498). To improve the environmental effects of city vegetation, tree species with leaf surface morphology that facilitates absorption of PM2.5 and other particles should be selected.
Keywords:landscaping trees  adsorption ability  PM25  leaf surface morphology  atomic force microscopy (AFM)
点击此处可从《生态学杂志》浏览原始摘要信息
点击此处可从《生态学杂志》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号