首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Investigation of microcystin removal from eutrophic surface water by aquatic vegetable bed
Authors:Hai-Liang Song  Xian-Ning Li  Xi-Wu Lu  Yuhei Inamori
Institution:aDepartment of Environmental Science and Engineering, Southeast University, Si Pai Lou No. 2, Nanjing 210096, Jiangsu, PR China;bNational Institute for Environmental Studies, Tsukuba 305-8506, Japan
Abstract:In southern China, many freshwater ecosystems, including lakes, rivers and reservoirs, are eutrophic. The nutrient loading coupled with year-round warm weather favors the growth of cyanobacteria, several of which can produce cyanotoxins, especially the potent liver toxins called microcystins, which are often detected in eutrophic drinking water sources. For purifying raw water used as source of drinking water treatment plants, an aquatic vegetable bed (AVB) experiment had been carried out in a hypertrophic waterfront of Lake Taihu, China, since October 2002. AVB was a simplification of the nutrient film technique (NFT) used to produce vegetables, which requires large quantities of water and nutrients. The average removal rates of total microcystin-RR and microcystin-LR were 63.0% and 66.7%, respectively. This study indicated that Ipomoea aquatica was able to absorb microcystins by using enzyme-linked immunosorbent assay (ELISA), and that the roots absorbed more toxins than leaves and stems. We used fluorescence in situ hybridization (FISH) to analyze the density of microcystin-degrading bacteria in AVB sediment. Two species of microcystin-degrading bacteria were detected, which indicated that microcystin bio-degradation processes did occur in AVB. Protozoa and metazoa were abundant in the rhizosphere. Aspidisca sp., Vorticella sp., Philodina sp., and Lecane sp. were the dominant species. The predation function of protozoa and metazoa had a positive effect on removal of cyanobacteria and microcystins.
Keywords:Microcystin  Nutrient film technique (NFT)  Biodegradation  Microorganism  Accumulation of plant
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号