首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Sorbitol dehydrogenase overexpression potentiates glucose toxicity to cultured retinal pericytes
Authors:Amano Shinjiro  Yamagishi Sho ichi  Kato Noriaki  Inagaki Yosuke  Okamoto Tamami  Makino Mitsuhiro  Taniko Kaori  Hirooka Hiroko  Jomori Takahito  Takeuchi Masayoshi
Institution:Division of Endocrinology and Metabolism, Department of Medicine, Kurume University School of Medicine, 830-0011, Kurume, Japan.
Abstract:The polyol pathway consists of two enzymes, aldose reductase (AR) and sorbitol dehydrogenase (SDH). There is a growing body of evidence to suggest that acceleration of the polyol pathway is implicated in the pathogenesis of diabetic vascular complications. However, a functional role remains to be elucidated for SDH in the development and progression of diabetic retinopathy. In this study, cultured bovine retinal capillary pericytes were used to investigate the effects of SDH overexpression on glucose toxicity. High glucose modestly increased reactive oxygen species (ROS) generation, decreased DNA synthesis, and up-regulated vascular endothelial growth factor (VEGF) mRNA levels in cultured pericytes. SDH overexpression was found to significantly stimulate ROS generation in high glucose-exposed pericytes and subsequently potentiate the cytopathic effects of glucose. Fidarestat, a newly developed AR inhibitor, and N-acetylcysteine, an antioxidant, completely prevented these deleterious effects of SDH overexpression on pericytes. Furthermore, fidarestat administration was found to significantly prevent vascular hyperpermeability, the characteristic changes of the early phase of diabetic retinopathy, in streptozotocin-induced diabetic rats. Our present results suggest that SDH-mediated conversion of sorbitol to fructose and the resultant ROS generation may play an active role in the pathogenesis of diabetic retinopathy. Blockage of sorbitol formation by fidarestat could be a promising therapeutic strategy for the treatment of early phase of diabetic retinopathy.
Keywords:Pericyte loss  Glycation  Polyol pathway  VEGF  Diabetic retinopathy
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号