首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Developmental genetic profiles of glutamate receptor system,neuromodulator system,protector of normal tissue and mitochondria,and reelin in marmoset cortex: Potential molecular mechanisms of pruning phase of spines in primate synaptic formation process during the end of infancy and prepuberty (II)
Authors:Tetsuya Sasaki  Tomofumi Oga  Keiko Nakagaki  Kazuhisa Sakai  Kayo Sumida  Kohei Hoshino  Izuru Miyawaki  Koichi Saito  Fumikazu Suto  Noritaka Ichinohe
Institution:1. Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan;2. Graduate School of Frontier Biosciences, Osaka University, Toyonaka, Osaka 560-8531, Japan;3. Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., 3-1-98 Kasugade-naka, Konohana-ku, Osaka 554-8558, Japan;4. Preclinical Research Laboratories, Dainippon Sumitomo Pharma Co., Ltd., 3-1-98 Kasugade-naka, Konohana-ku, Osaka 554-0022, Japan
Abstract:This is the second report of a series paper, which reports molecular mechanisms underlying the occurrence of pruning spine phase after rapid spinogenesis phase in neonates and young infant in the primate brain. We performed microarray analysis between the peak of spine numbers postnatal 3 months (M)] and spine pruning (postnatal 6 M) in prefrontal, inferior temporal, and primary visual cortices of the common marmoset (Callithrix jacchus). The pruning phase is not clearly defined in rodents but is in primates including the marmoset. The differentially expressed genes between 3 M and 6 M in all three cortical areas were selected by two-way analysis of variance. The list of selected genes was analyzed by canonical pathway analysis using “Ingenuity Pathway Analysis of complex omics data” (IPA; Ingenuity Systems, Qiagen, Hilden, Germany). In this report, we discuss these lists of genes for the glutamate receptor system, G-protein-coupled neuromodulator system, protector of normal tissue and mitochondria, and reelin. (1) Glutamate is a common neurotransmitter. Its receptors AMPA1, GRIK1, and their scaffold protein DLG4 decreased as spine numbers decreased. Instead, GRIN3 (NMDA receptor) increased, suggesting that strong NMDA excitatory currents may be required for a single neuron to receive sufficient net synaptic activity in order to compensate for the decrease in synapse. (2) Most of the G protein-coupled receptor genes (e.g., ADRA1D, HTR2A, HTR4, and DRD1) in the selected list were upregulated at 6 M. The downstream gene ROCK2 in these receptor systems plays a role of decreasing synapses, and ROCK2 decreased at 6 M. (3) Synaptic phagosytosis by microglia with complement and other cytokines could cause damage to normal tissue and mitochondria. SOD1, XIAP, CD46, and CD55, which play protective roles in normal tissue and mitochondria, showed higher expression at 6 M than at 3 M, suggesting that normal brain tissue is more protected at 6 M. (4) Reelin has an important role in cortical layer formation. In addition, RELN and three different pathways of reelin were expressed at 6 M, suggesting that new synapse formation decreased at that age. Moreover, if new synapses were formed, their positions were free and probably dependent on activity.
Keywords:Primate  Synapse formation  Synaptic pruning  Glutatmate receptor  G-protein coupling receptor  Reelin  Superoexide
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号