首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Sex steroid effects on the development and functioning of the growth hormone axis
Authors:J A Chowen  L M García-Segura  S González-Parra  J Argente
Institution:(1) Instituto Cajal, C.S.I.C., Avenida Dr. Arce 37, 28002 Madrid, Spain;(2) Hospital Infantil de Niño Jesús, Fundación Endocrinología y Nutrición, Universidad Autónoma, Avda. Menéndez y Pelayo 65, 28009 Madrid, Spain
Abstract:Summary 1. The secretory pattern of growth hormone (GH) is sexually dimorphic in the adult rat. However, this difference between the sexes does not become apparent until after the onset of puberty, suggesting that pubertal sex steroids play an important role in the manifestation of this phenomenon.2. We have addressed the question as to whether there exists a sexual dimorphism in the hypothalamic neuropeptides that regulate GH release from the anterior pituitary,i.e., somatostatin (SS) and growth hormone-releasing hormone (GHRH). In addition, we have investigated whether the developmental changes in the GH secretory pattern are correlated with changes in these neuropeptides. The effect of testosterone treatment on SS and GHRH neurons during both the neonatal period and adulthood have also been studied.3. We have found that the synthetic capacity, as reflected in relative messenger RNA (mRNA) levels, of both SS and GHRH neurons changes throughout development in both male and female rats. These mRNA levels are sexually dimorphic at certain times during maturation and can be modulated by changes in testosterone levels, suggesting that sex steroid modulation of these two neuropeptide systems could at least partially account for the sexual dimorphism seen in the adult GH secretory pattern.4. The neonatal steroid environment has also been suggested to be involved in the generation of the final adult GH secretory pattern, although the mechanisms underlying this effect are even less well understood. In support of the hypothesis that the neonatal steroid environment plays an important role in organizing the GH axis, we have found that the number of GHRH neurons in the adult brain, as well as their sensitivity to adult steroids, is modulated by neotatal testosterone treatment. The number of SS neurons in the periventricular and paraventricular nuclei were not modulated by neonatal steroids; however, the synthetic capacity of these neurons does appear to be influenced by the neonatal steroid environment.5. These studies suggest that both the neonatal and adult sex steroid environments influence the adult GH secretory pattern by modulating GHRH and SS neurons.
Keywords:GH  sexual dimorphism  GHRH  somatostatin  neonatal steroid environment  testosterone  secretory pattern
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号