首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Effects of combined water potential and temperature stresses on Cryptosporidium parvum oocysts.
Authors:M Walker  K Leddy  E Hager  E Hagar
Institution:Natural Resources Department, University of Nevada, Reno 89557-0013, USA. mwalker@equinox.unr.edu
Abstract:Hosts infected with the parasite Cryptosporidium parvum may excrete oocysts on soils in watersheds that supply public drinking water. Environmental stresses decrease the numbers of oocysts after deposition on soils. However, the rates and effects of combined stresses have not been well characterized, especially for the purposes of estimating decrease in numbers. We subjected oocysts to combined stresses of water potential (-4, -12, and -33 bars), above-freezing temperatures (4 and 30 degrees C), and a subfreezing temperature (-14 degrees C) for 1, 14, and 29 days and one to six freeze-thaw cycles (-14 to 10 degrees C) to estimate coefficients to characterize population degradation using multiplicative error and exponential decay models. The experiments were carried out in NaCl solutions with water potentials of -4, -12, and -33 bars, in combination with temperature stresses at levels that could be expected in natural soils. Increased water potential increased the rate of population degradation for all temperature conditions investigated. Enhanced degradation leads to estimated rates of population degradation that are greater than those that have been reported and used in previous studies conducted to assess risk of water supply contamination from sources of C. parvum.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号