首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Size-selective grazing on bacteria by natural assemblages of estuarine flagellates and ciliates
Authors:J M Gonzalez  E B Sherr  B F Sherr
Institution:Departamento de Microbiologia e Inmunologia, Facultad de Ciencias, University del Pais Vasco, Bilbao, Spain.
Abstract:The small average cell size of in situ bacterioplankton, relative to cultured cells, has been suggested to be at least partly a result of selection of larger-sized cells by bacterivorous protozoa. In this study, we determined the relative rates of uptake of fluorescence-labeled bacteria (FLB), of various cell sizes and cell types, by natural assemblages of flagellates and ciliates in estuarine water. Calculated clearance rates of bacterivorous flagellates had a highly significant, positive relationship with size of FLB, over a range of average biovolume of FLB of 0.03 to 0.08 microns3. Bacterial cell type or cell shape per se did not appear to affect flagellate clearance rates. The dominant size classes of flagellates which ingested all types of FLB were 3- to 4-microns cells. Ciliates also showed a general preference for larger-sized bacteria. However, ciliates ingested a gram-positive enteric bacterium and a marine bacterial isolate at higher rates than they did a similarly sized, gram-negative enteric bacterium or natural bacterioplankton, respectively. From the results of an experiment designed to test whether the addition of a preferentially grazed bacterial strain stimulated clearance rates of natural bacterioplankton FLB by the ciliates, we hypothesized that measured differences in rates of FLB uptake were due instead to differences in effective retention of bacteria by the ciliates. In general, clearance rates for different FLB varied by a factor of 2 to 4. Selective grazing by protozoa of larger bacterioplankton cells, which are generally the cells actively growing or dividing, may in part explain the small average cell size, low frequency of dividing cells, and low growth rates generally observed for assemblages of suspended bacteria.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号