首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Genome data mining and soil survey for the novel group 5 [NiFe]-hydrogenase to explore the diversity and ecological importance of presumptive high-affinity H(2)-oxidizing bacteria
Authors:Constant Philippe  Chowdhury Soumitra Paul  Hesse Laura  Pratscher Jennifer  Conrad Ralf
Institution:Max Planck Institute for Terrestrial Microbiology, Department of Biogeochemistry, Karl-von-Frisch-Strasse 10, 35043 Marburg, Germany.
Abstract:Streptomyces soil isolates exhibiting the unique ability to oxidize atmospheric H(2) possess genes specifying a putative high-affinity NiFe]-hydrogenase. This study was undertaken to explore the taxonomic diversity and the ecological importance of this novel functional group. We propose to designate the genes encoding the small and large subunits of the putative high-affinity hydrogenase hhyS and hhyL, respectively. Genome data mining revealed that the hhyL gene is unevenly distributed in the phyla Actinobacteria, Proteobacteria, Chloroflexi, and Acidobacteria. The hhyL gene sequences comprised a phylogenetically distinct group, namely, the group 5 NiFe]-hydrogenase genes. The presumptive high-affinity H(2)-oxidizing bacteria constituting group 5 were shown to possess a hydrogenase gene cluster, including the genes encoding auxiliary and structural components of the enzyme and four additional open reading frames (ORFs) of unknown function. A soil survey confirmed that both high-affinity H(2) oxidation activity and the hhyL gene are ubiquitous. A quantitative PCR assay revealed that soil contained 10(6) to 10(8) hhyL gene copies g (dry weight)(-1). Assuming one hhyL gene copy per genome, the abundance of presumptive high-affinity H(2)-oxidizing bacteria was higher than the maximal population size for which maintenance energy requirements would be fully supplied through the H(2) oxidation activity measured in soil. Our data indicate that the abundance of the hhyL gene should not be taken as a reliable proxy for the uptake of atmospheric H(2) by soil, because high-affinity H(2) oxidation is a facultatively mixotrophic metabolism, and microorganisms harboring a nonfunctional group 5 NiFe]-hydrogenase may occur.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号