首页 | 本学科首页   官方微博 | 高级检索  
   检索      

基因工程α-半乳糖苷酶的制备及其性质研究
引用本文:高新,杨军,李素波,刘泽澎,章扬培.基因工程α-半乳糖苷酶的制备及其性质研究[J].生物工程学报,2003,19(2):223-226.
作者姓名:高新  杨军  李素波  刘泽澎  章扬培
作者单位:军事医学科学院野战输血研究所,北京,100850
摘    要:在获得可分泌表达α 半乳糖苷酶基因工程毕赤酵母菌株的基础上 ,尝试了基因工程α 半乳糖苷酶在 5L发酵罐中的表达以及从发酵液中纯化α 半乳糖苷酶的研究。在 4L无机盐培养基中接种 0 .4LpPIC9K Gal GS115培养物 ,最终得到 3 .5L发酵液。离心所得上清中总蛋白含量为 2 .1g L。根据发酵液中目的蛋白含量高、杂质少等特点 ,设计了如下的纯化流程 :离心→超滤→阳离子交换层析→脱盐→浓缩。纯化后电泳银染结果呈单一蛋白带 ,总回收率 41%。通过测定米氏常数等生化性质对重组酶进行鉴定后 ,完成了人B型红细胞的酶解实验。结果表明 ,从发酵液中纯化的α 半乳糖苷酶可将B型红细胞改造成O型红细胞。本研究同时在数量和质量上为α 半乳糖苷酶在众多领域的广泛应用奠定了基础。

关 键 词:α-半乳糖苷酶  发酵  纯化  血型改造
文章编号:1000-3061(2003)02-0223-04
修稿时间:2002年9月12日

Fermentation and Purification of Recombinant α-Galactosidase from Pichia pastoris
GAO Xin,YANG Jun,LI Su-Bo,LIU Ze-Peng,ZHANG Yang-Pei.Fermentation and Purification of Recombinant α-Galactosidase from Pichia pastoris[J].Chinese Journal of Biotechnology,2003,19(2):223-226.
Authors:GAO Xin  YANG Jun  LI Su-Bo  LIU Ze-Peng  ZHANG Yang-Pei
Institution:Beijing Institute of Transfusion Medicine, Beijing 100850, China. gaox@nic.bmi.ac.cn
Abstract:In order to obtain an adequate supply of alpha-galactosidase for research and practical use, the fermentation, purification and identification of the recombinant coffee bean a-galactosidase were carried out. Baffled flasks containing 100mL BMGY were inoculated with the pPIC9K-Gal/GS115 strain and allowed to grow at 30 degrees C, 250- 300r/min until a maximum optical density at 600nm (OD600) between 2.0 to 6.0 was attained. Entire 400 mL seed culture was transferred aseptically to the 5-liter fermenter, which contained 4 liter sterilized basal salts medium and 4% glycerol. The batch culture grew at 30 degrees C, pH 5.0 until the glycerol was completely consumed, and a glycerol feed was initiated to increase the cell biomass prior to induction with methanol. The culture was centrifuged at 8000 x g and the supernatant was collected. Following ultrafiltration, the retentate was balanced in 20 mmol/L sodium formicate buffer, pH 3.8 and loaded onto a cation-exchange column, HiTrap SP. The column was washed with the same buffer and bound proteins were eluted with 1 mol/L NaCl. The fractions containing recombinant a-galactosidase were pooled and concentrated with PEG20 000. Subsequently, the biochemical properties of the enzyme were determined with typical methods. At last, the fresh human blood A and B erythrocytes were incubated with the purified alpha-galactosidase at 26 degrees C for 2 4 hours. Hemagglutinins were assayed by the standard method. After an elapsed fermentation times (EFT) of 18h, the fed-batch phase was initiated to increase the cell biomass. A cellular yield of nearly 200 g/liter wet cells was achieved when induction was initiated. 72h later, the alpha-galactosidase activity against artificial substrate PNPG (PNP-alpha-galactopyranoside) achieved 36 000u per liter culture. The crude fementation supernatant contained few impurities as detected by SDS-PAGE. The supernatant was purified by cation-exchange chromatography, the target alpha-galactosidase was eluted with 40% 1mol/L NaCl and showed a 41kD band on SDS-PAGE. After concentration, the final recovery was about 41%. The Michaelis constant of the recombinant alpha-galactosidase was determined as 0.275 mmol/L, which slightly lower than the nature enzyme and suggested a higher affinity with specific substrate. When human blood type B erythrocytes pretreated with 100u/mL recombinant alpha-galactosidase reacted with bood type B antiserum, no hemagglutination occurred. This suggested that the B antigens had been removed by the enzyme successfully. These results demonstrated that the recombinant alpha-galactosidase could be produced in largescale and made it possible to explore the application of alpha-galactosidase in more fields.
Keywords:galactosidase  fermentation  purification  blood erythrocytes conversion
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《生物工程学报》浏览原始摘要信息
点击此处可从《生物工程学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号