首页 | 本学科首页   官方微博 | 高级检索  
   检索      

红景天甙生物合成途径:酪醇合成的起始反应及其糖基化
引用本文:马兰青,柳春梅,于寒松,张继星,高东尧,李彦舫,王有年.红景天甙生物合成途径:酪醇合成的起始反应及其糖基化[J].生物工程学报,2012,28(3):282-294.
作者姓名:马兰青  柳春梅  于寒松  张继星  高东尧  李彦舫  王有年
作者单位:北京农学院 农业部都市农业 (北方) 重点实验室,北京 102206;北京农学院 农业部都市农业 (北方) 重点实验室,北京 102206;吉林农业大学食品科学与工程学院,吉林 长春 130118;内蒙古民族大学生命科学学院,内蒙古 通辽 028043;吉林大学植物科学学院,吉林 长春 130062;吉林大学植物科学学院,吉林 长春 130062;北京农学院 农业部都市农业 (北方) 重点实验室,北京 102206
基金项目:国家自然科学基金 (Nos. 31140068, 30900112), 北京市自然科学基金重点项目 (No. 5111001), 北京市教委面上项目 (No. KM201110020001), 北京市属高校人才强教深化计划项目 (Nos. PHR20090516, PHR201108279) 资助。
摘    要:红景天甙(Salidroside)生源途径分子机制的解析是利用基因工程、代谢工程技术合成目标化合物的基础。糖基化是红景天甙生物合成的最后一步反应。在前期工作中,本课题组率先报道了与红景天甙生物合成相关的3个尿苷二磷酸葡萄糖基转移酶(UGTs)基因,在体外酶学性质研究的基础上,利用根癌农杆菌和发根农杆菌介导分别建立了相关转基因体系,鉴别了红景天甙生物合成最适UGT及植物和毛状根生物反应器系统合成红景天甙的效率差异;酪醇(Tyrosol)是红景天甙糖基化反应的甙元底物分子,其具体的代谢通路及其调控机制仍不明确。针对酪醇生物合成来源主要存在两种观点:一是酪醇可能来自于苯丙烷代谢途径产生的4-香豆酸,该途径起源于苯丙氨酸;二是生物碱代谢途径的中间产物酪胺可能是酪醇生物合成的前体,该途径则起源于酪氨酸。在后续工作中,否定了酪醇来源于苯丙烷代谢途径的可能性,进一步的工作证实酪氨酸脱羧酶(TyrDC)在酪醇生物合成的起始反应中担负着重要功能,酪醇作为一种苯乙烷类化合物衍生物,其生物合成来源于生物碱代谢途径。

关 键 词:红景天甙  酪醇  分子调控  红景天
收稿时间:2011/7/18 0:00:00

Salidroside biosynthesis pathway: the initial reaction and glycosylation of tyrosol
Lanqing M,Chunmei Liu,Hansong Yu,Jixing Zhang,Dongyao Gao,Yanfang Li and Younian Wang.Salidroside biosynthesis pathway: the initial reaction and glycosylation of tyrosol[J].Chinese Journal of Biotechnology,2012,28(3):282-294.
Authors:Lanqing M  Chunmei Liu  Hansong Yu  Jixing Zhang  Dongyao Gao  Yanfang Li and Younian Wang
Institution:Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture China, Beijing University of Agriculture, Beijing 102206, China;Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture China, Beijing University of Agriculture, Beijing 102206, China;Food Science and Engineering College, Jilin Agricultural University, Changchun 130118, Jilin, China;College of Life Science, Inner Mongolia University for Nationalities, Tongliao 028043, Inner Mongolia, China;College of Plant Science, Jilin University, Changchun 130062, Jilin, China;College of Plant Science, Jilin University, Changchun 130062, Jilin, China;Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture China, Beijing University of Agriculture, Beijing 102206, China
Abstract:Salidroside, the 8-O-beta-D-glucoside of tyrosol, is a novel adaptogenic drug extracted from the medicinal plant Rhodiola sachalinensis A. Bor. Due to the scarcity of R. sachalinensis and its low yield of salidroside, there is great interest in enhancing the production of salidroside by biotechnological process. Glucosylation of tyrosol is thought to be the final step in salidroside biosynthesis. In our related works, three UGT clones were isolated from the roots and the cultured cells. Our intention was to combine the catalytic specificity of these UGTs in vitro in order to change the level of salidroside in vivo by over-expression of the above UGTs. However, as the aglycone substrate of salidroside, the biosynthetic pathway of tyrosol and its regulation are less well understood. The results of related studies revealed that there are two different possibilities for the tyrosol biosynthetic pathway. One possibility is that tyrosol is produced from a p-coumaric acid precursor, which is derived mainly from phenylalanine. The second possibility is that the precursor of tyrosol might be tyramine, which is synthesized from tyrosine. Our previous work demonstrated that over-expression of the endogenous phenylalanine ammonia-lyase gene (PALrs1) and accumulation of p-coumaric acid did not facilitate tyrosol biosynthesis. In contrast, the data presented in our recent work provide in vitro and in vivo evidence that the tyrosine decarboxylase (RsTyrDC) is most likely to have an important function in the initial reaction of the salidroside biosynthesis pathway in R. Sachalinensis.
Keywords:salidroside  tyrosol  molecular regulation  Rhodiola L  
本文献已被 CNKI PubMed 等数据库收录!
点击此处可从《生物工程学报》浏览原始摘要信息
点击此处可从《生物工程学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号