首页 | 本学科首页   官方微博 | 高级检索  
   检索      

利用代谢工程构建D-甘露醇生产菌株
引用本文:王小芳,陈晶,刘萍萍,徐洪涛,郁彭,张学礼.利用代谢工程构建D-甘露醇生产菌株[J].生物工程学报,2013,29(10):1450-1462.
作者姓名:王小芳  陈晶  刘萍萍  徐洪涛  郁彭  张学礼
作者单位:天津科技大学生物工程学院,天津 310018;中国科学院天津工业生物技术研究所,天津 300308;中国科学院系统微生物工程重点实验室,天津 300308;天津科技大学生物工程学院,天津 310018;中国科学院天津工业生物技术研究所,天津 300308;中国科学院系统微生物工程重点实验室,天津 300308;中国科学院天津工业生物技术研究所,天津 300308;中国科学院系统微生物工程重点实验室,天津 300308;中国科学院天津工业生物技术研究所,天津 300308;中国科学院系统微生物工程重点实验室,天津 300308;天津科技大学生物工程学院,天津 310018;中国科学院天津工业生物技术研究所,天津 300308;中国科学院系统微生物工程重点实验室,天津 300308
基金项目:国家重点基础研究发展计划 (973计划) (No. 2011CBA00800),中国科学院百人计划资助。
摘    要:D-甘露醇广泛应用于食品、制药、化学品工业等领域。从野生型大肠杆菌出发,将来自假肠膜明串珠菌Leuconostoc pseudomesenteroides ATCC 12291菌株的甘露醇脱氢酶与果糖转运蛋白编码基因整合到大肠杆菌ATCC 8739的染色体中,并失活其他的发酵途径 (丙酮酸甲酸裂解酶、乳酸脱氢酶、富马酸还原酶、乙醇脱氢酶、甲基乙二醛合成酶和丙酮酸氧化酶) ,构建了一株遗传稳定的D-甘露醇生产菌株。使用无机盐培养基和葡萄糖果糖作为混合碳源,厌氧发酵6 d,D-甘露醇产量达1.2 mmol/L。基于细胞生长和D-甘露醇合成的偶联,进一步通过代谢进化技术提高细胞合成D-甘露醇的生产能力。经过80代的驯化,D-甘露醇产量提高了2.6倍,甘露醇脱氢酶的活性提高了2.8倍。构建获得的遗传稳定的工程菌能直接发酵糖生产D-甘露醇,不需添加抗生素、诱导剂和甲酸,在工业化生产时有一定优势。

关 键 词:D-甘露醇,代谢进化,甘露醇脱氢酶,大肠杆菌
收稿时间:2013/7/18 0:00:00

Production of D-mannitol by metabolically engineered Escherichia coli
Xiaofang Wang,Jing Chen,Pingping Liu,Hongtao Xu,Peng Yu and Xueli Zhang.Production of D-mannitol by metabolically engineered Escherichia coli[J].Chinese Journal of Biotechnology,2013,29(10):1450-1462.
Authors:Xiaofang Wang  Jing Chen  Pingping Liu  Hongtao Xu  Peng Yu and Xueli Zhang
Institution:College of Biotechnology, Tianjin University of Science & Technology, Tianjin 310018, China; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China;College of Biotechnology, Tianjin University of Science & Technology, Tianjin 310018, China; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China;Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China;Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China;College of Biotechnology, Tianjin University of Science & Technology, Tianjin 310018, China;Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
Abstract:D-Mannitol has wide applications in food, pharmaceutical, and chemical industries. In this study, we constructed a genetically stable Escherichia coli strain for D-mannitol production by integrating mannitol dehydrogenase (mdh) and fructose permease (fupL) genes of Leuconostoc pseudomesenteroides ATCC 12291 into chromosome of E. coli ATCC 8739 and inactivating other fermentation pathways (including pyruvate formate-lyase, lactate dehydrogenase, fumarate reductase, alcohol dehydrogenase, methylglyoxal synthase and pyruvate oxidase). Using mineral salts medium with glucose and fructose as carbon sources, the engineered strain could produce 1.2 mmol/L D-mannitol after anaerobic fermentation for 6 days. Based on the coupling of cell growth and D-mannitol production, metabolic evolution was used to improve D-mannitol production. After evolution for 80 generations, D-mannitol titer increased 2.6-fold and mannitol dehydrogenase activity increased 2.8-fold. Genetically stable strains constructed in this work could ferment sugars to produce D-mannitol without the addition of antibiotics, inducers and formate, which was favorable for industrial production.
Keywords:D-mannitol  metabolic evolution  mannitol dehydrogenase  Escherichia coli
点击此处可从《生物工程学报》浏览原始摘要信息
点击此处可从《生物工程学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号