首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Changes in bacterial CO2 fixation with depth in agricultural soils
Authors:Xiaohong Wu  Tida Ge  Hongzhao Yuan  Baozhen Li  Hanhua Zhu  Ping Zhou  Fanggong Sui  Anthony G O’Donnell  Jinshui Wu
Institution:1. Changsha Research Station for Agricultural and Environmental Monitoring and Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, 410125, China
2. ISA-CAS and UWA Joint Laboratory for Soil Systems Biology, Hunan, 410125, China
5. Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, 410125, China
3. School of Resource and Environment, Qingdao Agricultural University, Qingdao, 266109, China
4. Institute of Agriculture, Faculty of Science, University of Western Australia, Crawley, WA, 6009, Australia
Abstract:Soils were incubated continuously in an atmosphere of 14CO2 and the distribution of labeled C into soil organic carbon (14C-SOC) was determined at 0–1, 1–5, and 5–17 cm down the profile. Significant amounts of 14C-SOC were measured in paddy soils with a mean of 1,180.6?±?105.2 mg kg–1 at 0–1 cm and 135.3?±?47.1 mg kg?1 at 1–5 cm. This accounted for 5.9?±?0.7 % and 0.7?±?0.2 %, respectively, of the total soil organic carbon at these depths. In the upland soils, the mean 14C-SOC concentrations were 43 times (0–1 cm) and 11 times (1–5 cm) lower, respectively, than those in the paddy soils. The amounts of 14C incorporated into the microbial biomass (MBC) were also much lower in upland soils (5.0?±?3.6 % and 2.9?±?1.9 % at 0–1 and 1–5 cm, respectively) than in paddy soils (34.1?±?12.4 % and 10.2?±?2.1 % at 0–1 and 1–5 cm, respectively). Similarly, the amount of 14C incorporated into the dissolved organic carbon (DOC) was considerably higher in paddy soils (26.1?±?6.9 % and 6.9?±?1.3 % at 0–1 and 1–5 cm, respectively) than in upland soils (6.0?±?2.7 % and 4.3?±?2.2 %, respectively). The observation that the majority of the fixed 14C-SOC, RubisCO activity and cbbL gene abundance were concentrated at 0–1 cm depth and the fact that light is restricted to the top few millimeters of the soil profiles highlighted the importance of phototrophs in CO2 fixation in surface soils. Phylogenetic analysis of the cbbL genes showed that the potential for CO2 fixation was evident throughout the profile and distributed between both photoautotrophic and chemoautotrophic bacteria such as Rhodopseudomonas palustris, Bradyrhizobium japonicum, Rubrivivax gelatinosus and Ralstonia eutropha.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号